首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jiankuan Duan  Bin Hu  Man He 《Electrophoresis》2012,33(19-20):2953-2960
In this paper, a new method of nanometer‐sized alumina packed microcolumn SPE combined with field‐amplified sample stacking (FASS)–CE‐UV detection was developed for the speciation analysis of inorganic selenium in environmental water samples. Self‐synthesized nanometer‐sized alumina was packed in a microcolumn as the SPE adsorbent to retain Se(IV) and Se(VI) simultaneously at pH 6 and the retained inorganic selenium was eluted by concentrated ammonia. The eluent was used for FASS–CE–UV analysis after NH3 evaporation. The factors affecting the preconcentration of both Se(IV) and Se(VI) by SPE and FASS were studied and the optimal CE separation conditions for Se(IV) and Se(VI) were obtained. Under the optimal conditions, the LODs of 57 ng L?1 (Se(IV)) and 71 ng L?1 (Se(VI)) were obtained, respectively. The developed method was validated by the analysis of a certified reference material of GBW(E)080395 environmental water and the determined value was in a good agreement with the certified value. It was also successfully applied to the speciation analysis of inorganic selenium in environmental water samples, including Yangtze River water, spring water, and tap water.  相似文献   

2.
J. Zheng  W. Kosmus 《Chromatographia》2000,51(5-6):338-344
Summary Separation of seven inorganic and organic selenium compounds, namely selenic acid [Se(VI)], selenous acid [Se(IV)], trimethylselenonium iodide (TMSe+), selenocystine (SeCys), selenomethionine (SeMet), selenoethionine (Seet), and selenocystamine (SeCM), has been performed on a LiChrosorb C 18 column by using mixed ion-pair reagents; 1-butanesulfonic acid and tetramethylammonium hydroxide. Flame atomic absorption spectrometry (FAAS) was used as an element-specific detector. The retention behaviors of selenium compounds in terms of several chromatographic parameters, such as pH of the mobile phase, the concentrations of ion-pair reagents, and the content of organic modifier (methanol) were investigated. It was found that the separation of both inorganic and organic selenium compounds can be achieved within 12 min with a mobile phase of 10 mM 1-butanesulfonic acid −4 mM tetramethylammonium hydroxide −4 mM malonic acid −0.05% methanol adjusted to pH 4.5 at a flow rate of 1.0 mL min−1. The results obtained in this study showed that the use of mixed ion-pair reagents is very useful to improve the separation of selenium compounds. The applicability of this technique for the speciation of selenium compounds in real samples was demonstrated by the determination of selenium compounds in a selenium nutritional supplement. The results were found to be in good agreement with those obtained by ion-exchange HPLC-ICP-MS.  相似文献   

3.
For selenium speciation analysis, the hyphenation of chromatographic separation with element-specific detection has proved a useful technique. A powerful separation system, which is capable of resolving several biologically and environmentally important selenium compounds in a single column, is greatly needed. However, that has been difficult to achieve. In this paper eight selenium compounds, namely, selenite [Se(IV)], selenate [Se(VI)], selenocystine (SeCys), selenourea (SeUr), selenomethionine (SeMet), selenoethionine (SeEt), selenocystamine (SeCM) and trimethylselenonium ion (TMSe+), were separated by using mixed ion-pair reagents containing 2.5 mM sodium 1-butanesulfonate and 8 mM tetramethylammonium hydroxide as a mobile phase. The separation of these anionic, cationic and neutral organic selenium compounds on a LiChrosorb RP18 reversed-phase column took only 18 min at a flow-rate of 1.0 ml/min with isocratic elution, and baseline separation among the six organic Se compounds was achieved. Inductively coupled plasma mass spectrometry (ICP-MS) was employed as element-specific detection. A comparison of ICP-MS signal intensity obtained with a Barbington-type nebulizer and with an ultrasonic nebulizer (USN) was made. Different signal enhancement factors were observed for the various selenium compounds when a USN was used. The speciation technique was successfully applied to the study on chemical forms of selenium in a selenium nutritional supplement. Selenomethionine was found to be the predominant constituent of selenium in the supplement.  相似文献   

4.
A simple, novel, and selective flow‐injection solid‐phase extraction with inductively coupled plasma optical emission spectrometry method was developed for the speciation of inorganic selenium in environmental water samples. A mesoporous zirconia film was simply introduced to coat coal cinder by means of the sol–gel technique, and the adsorptive performance of the coated material for Se(IV)/Se(VI) was investigated in different media. Both Se(IV) and Se(VI) can be retained quantitatively by the material in HCl/NaOH (pH 1.0–9.0) media, while only Se(IV) was adsorbed quantitatively in sodium acetate buffer (pH 3.5–6.0). Thus, the assay of Se(VI) is based on subtracting Se(IV) from total selenium by controlling different adsorptive media without employing any redox procedure. Under the optimum conditions, the detection limit of Se(IV) is 9.0 ng/L with an enrichment factor of 100, and the relative standard deviation is 3.6% (n = 9, C = 5.0 ng/mL). The developed method was successfully applied to the speciation of inorganic selenium in environmental water samples with satisfactory results. In order to further verify the accuracy of the developed method, it was applied to analysis of total selenium in GSBZ 50031–94 certified reference environmental water, and the determined values coincided with the certified values very well.  相似文献   

5.
《中国化学快报》2022,33(7):3444-3450
A simple and convenient method has been developed for the pre-concentration and separation of inorganic selenium species from environmental water samples using anion exchange chromatographic column combined with high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) measurement. 75Se(IV) and 75Se(VI) were prepared and used as tracers during the experiments. The volatility of selenium during solution evaporation was investigated to establish a reliable water samples pretreatment procedure. The parameters which affect the uptake of Se(IV) and Se(VI) on Dowex1 × 8 resin was optimized and the procedure for Se(IV) and Se(VI) separation was proposed. Both Se(IV) and Se(VI) are retained on the column in natural or alkaline solution with high distribution coefficient. The successive gradient elution of pre-concentrated species of selenium with HNO3 solution allows to differentiate between them. Se(IV) and Se(VI) finally were eluted with 0.05 mol/L HNO3 and 5.0 mol/L HNO3, respectively. The proposed method has been successfully verified using the certified reference materials (CRMs) of real water samples, and spiked recoveries for real samples were 98%-104% with 5% relative standard deviations (RSDs). The developed procedure is proved to be reliable and can be used for the rapid determination of selenium species in environmental water samples.  相似文献   

6.
Lu CY  Yan XP 《Electrophoresis》2005,26(1):155-160
A new method for speciation analysis of two inorganic selenium species was developed by on-line coupling of capillary electrophoresis (CE) with hydride generation-atomic fluorescence spectrometry (HG-AFS) and on-line conversion of Se(VI) to Se(IV). Baseline separation of Se(VI) and Se(IV) was achieved by CE in a 50 cm x 75 microm inside diameter (ID) fused-silica capillary at -20 kV using a mixture of 15 mmol.L(-1) NaH2PO4 and 0.5 mmol.L(-1) cetyltrimethylammonium bromide (pH 7.5) as electrolyte buffer. Se(VI) was on-line reduced to Se(IV) by mixing the CE effluent with concentrated HCl. The precision (relative standard deviation, RSD, n=7) ranged from 0.7 to 1.3% for migration time, 6.4 to 3.7% for peak height response, and 5.9 to 6.1% for peak area for the two selenium species at the 500 microg.L(-1) (as Se) level. The detection limits were 33 and 25 microg.L(-1) (as Se) for Se(VI) and Se(IV), respectively. The recoveries of the two selenium species in five locally collected water samples ranged from 88 to 114%. The developed method was applied to speciation analysis of inorganic selenium species in spiked natural water samples.  相似文献   

7.
The purpose of this paper is to develop an easy and quick on-line selenium speciation method (LC-UV-HG-AFS) in cow milk obtained after different supplementation to cow feed. This study focuses on selenium speciation in cow milk after the use of different selenium species (organic selenium as selenised yeast and inorganic selenium as sodium selenite) in the supplementation of forages. Separation was carried out on a μBondapack C18 column with the positively charged ion-pairing agent tetraethylammonium chloride in the mobile phase. The optimization of pre-reduction conditions was carried out; this step was done with UV irradiation and a heating block to improve the reduction of the different Se-compounds. Variables such as exposure time, hydrochloric acid concentration and temperature were studied. The detection limits for SeCyst2, Se(IV), SeMet and Se(VI) were 0.4, 0.5, 0.9 and 1.0 μg l−1, respectively. The proposed method was applied to cow milk samples. The milk samples obtained after an organic supplementation of feeding as selenised yeast present three species of selenium, SeCyst2, Se(IV) and SeMet, while only SeCyst2 and Se(IV) are present in milk samples obtained after an inorganic supplementation of feeding.  相似文献   

8.
A new method based on cloud point extraction (CPE) separation and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICPMS) detection has been proposed for the speciation of inorganic selenium in environmental waters. When the temperature of the system is higher than the cloud point temperature (CPT) of the selected surfactant Triton X-114, the complex of Se(IV) with ammonium pyrrolidine dithiocarbamate (APDC) seems to be extracted into the surfactant-rich phase, whereas the Se(VI) remains in aqueous solutions. Thus, an in situ separation of Se(IV) and Se(VI) could be realized. The concentrated analyte was introduced into the ETV-ICP mass spectrometer for determination of Se((IV) after dilution with 200 microL methanol. Se(VI) was reduced to Se(IV) prior to determining total selenium, and its assay was based on subtracting Se(IV) from total selenium. The main factors affecting the CPE and the vaporization behavior of the analyte were investigated in detail. Under the optimized experimental conditions, the limit of detection (LOD) for Se(IV) was 8.0 ng/L with an enhancement factor of 39 when 10 mL of sample solution was preconcentrated to 0.2 mL. The relative standard deviation (RSD) was found to be 3.9% (C(Se(IV)) = 1.0 microg/L, n = 7). The proposed method was applied to the speciation of inorganic selenium in different environmental water samples with the recovery for the spiked samples in the range of 82-102%.  相似文献   

9.
Herein, ultrasound-assisted emulsification microextraction (USAEME) and dispersive liquid–liquid microextraction (DLLME) methods based on applying low-density organic solvents have been critically compared for the speciation of inorganic selenium, Se(IV) (selenite) and Se(VI) (selenate) in environmental water samples by gas chromatography-flame ionization detection (GC-FID). At pH 2 and T = 75 °C for 7 min, only Se(IV) was able to form the piazselenol complex with 4-nitro-o-phenylenediamine. Piazselenol was extracted using an extraction solvent and was injected into a GC-FID instrument for the determination of Se(IV). Conveniently, Se(VI) remained in the aqueous phase. Total inorganic selenium was determined after the reduction of Se(VI) to Se(IV) and prior to the above procedures. The Se(VI) concentration was calculated as the difference between the measured total inorganic selenium and Se(IV) content. The effect of various experimental parameters on the efficiencies of the two methods and their optimum values were studied with the aid of response surface methodology and experimental design. Under the optimal conditions, the limit of detections (LODs) for Se(IV) obtained by USAEME-GC-FID and DLLME-GC-FID were 0.05 and 0.11 ng mL−1, respectively. The relative standard deviations (RSDs, n = 6) for the measurement 10 ng mL−1 of Se(IV) were 5.32% and 4.57% with the enrichment factors of 2491 and 1129 for USAEME-GC-FID and DLLME-GC-FID, respectively. Both methods were successfully applied to the analysis of inorganic selenium in different environmental water samples and certified reference material (NIST SRM 1643e).  相似文献   

10.

A method is presented for arsenic speciation analysis of an oyster sample using ion chromatography coupled with an inductively coupled plasma mass spectrometry (ICP-MS) instrument. A strong anion exchange resin was employed with a step gradient elution of 0.1 mM/0.1 M K 2 SO 4 at pH 10.2. Arsenobetaine and dimethylarsinic acid were determined following extraction based on trypsin enzymolysis with 95-100% extraction efficiency. Limits of detection in the range 0.1-0.3 mg kg m 1 of arsenic were obtained for organic arsenic species. No inorganic arsenic was detected. Validation was performed using TORT-2 as a certified reference material. Although high performance liquid chromatography (HPLC) coupled to ICP-MS is an effective method for speciation analysis it is not always necessary to obtain such a detailed picture. A simple liquid chromatographic separation technique based upon mini-column technology is presented. It was developed to obtain a fast, efficient and reliable separation of inorganic from organic, i.e. assumed toxic from non-toxic, arsenic and selenium species suitable for use as an initial screening method for environmental analysis. Two types of strong anion exchange resin were tested. Excellent separation was obtained for both min-column resins and analysis times were within 7 min. Limits of detection obtained for inorganic arsenic, organic arsenic, selenomethionine, Se IV and Se VI were 1.6, 1.8, 66, 32 and 22 µg kg m 1 , respectively.  相似文献   

11.
Speciation of selenocysteine (SeCys), selenomethionine (SeMet), selenoethionine (SeET), selenite (Se(IV)) and selenate (Se(VI)) has been accomplished using high-performance liquid chromatography, with the aid of an anion exchange column and a reversed-phase column, both connected through a six-port switching valve. On-line microwave-assisted digestion and hydride generation steps were performed prior to the atomic fluorescence detection. The elution of the seleno amino acids was accomplished in the reversed-phased column using water as mobile phase. Selenite and selenate were separated in the anion exchange column, using gradient elution with an acetate buffer. The separation of the five selenium compounds took place in 15 min. The detection limits obtained ranged between 0.6 and 0.9 microg l(-1). Values of r>0.998 were obtained for linear fit graphs. A commercial available urine sample was analyzed, in which SeCys and Se(IV) were quantified.  相似文献   

12.
A simple solid phase extraction procedure for speciation of selenium(IV) and selenium(VI) in environmental samples has been proposed prior to graphite furnace atomic absorption spectrometry. The method is based on the solid phase extraction of the selenium(IV)-ammonium pyrrolidine dithiocarbamate (APDC) chelate on the Diaion HP-2MG. After reduction of Se(VI) by heating the samples in the microwave oven with 4 mol l−1 HCl, the system was applied to the total selenium. Se(VI) was calculated as the difference between the total selenium content and Se(IV) content. The experimental parameters, pH, amounts of reagents, eluent type and sample volume were optimized. The recoveries of analytes were found greater than 95%. No appreciable matrix effects were observed. The adsorption capacity of sorbent was 5.20 mg g−1 Se (IV). The detection limit of Se (IV) (3sigma, n = 11) is 0.010 μg l−1. The preconcentration factor for the presented system was 100. The proposed method was applied to the speciation of selenium(IV), selenium(VI) and determination of total selenium in natural waters and microwave digested soil, garlic, onion, rice, wheat and hazelnut samples harvested various locations in Turkey with satisfactory results. In order to verify the accuracy of the method, certified reference materials (NIST SRM 2711 Montana Soil, NIST SRM 1568a Rice Flour and NIST SRM 8418 Wheat Gluten) were analyzed and the results obtained were in good agreement with the certified values. The relative errors and relative standard deviations were below 6 and 10%, respectively.  相似文献   

13.
We have developed an on-line sequential photocatalyst-assisted digestion and vaporization device (SPADVD), which operates through the nano-TiO2-catalyzed photo-oxidation and reduction of selenium (Se) species, for coupling between anion exchange chromatography (LC) and inductively coupled plasma mass spectrometry (ICP-MS) systems to provide a simple and sensitive hyphenated method for the speciation analysis of Se species without the need for conventional chemical digestion and vaporization techniques. Because our proposed on-line SPADVD allows both organic and inorganic Se species in the column effluent to be converted on-line into volatile Se products, which are then measured directly through ICP-MS, the complexity of the procedure and the probability of contamination arising from the use of additional chemicals are both low. Under the optimized conditions for SPADVD – using 1 g of nano-TiO2 per liter, at pH 3, and illuminating for 80 s – we found that Se(IV), Se(VI), and selenomethionine (SeMet) were all converted quantitatively into volatile Se products. In addition, because the digestion and vaporization efficiencies of all the tested selenicals were improved when using our proposed on-line LC/SPADVD/ICP-MS system, the detection limits for Se(IV), Se(VI), and SeMet were all in the nanogram-per-liter range (based on 3σ). A series of validation experiments – analysis of neat and spiked extracted samples – indicated that our proposed methods could be applied satisfactorily to the speciation analysis of organic and inorganic Se species in the extracts of Se-enriched supplements.  相似文献   

14.
As a result of microbiological activity it is possible to find dimethylselenium (DMSe) and dimethyldiselenium (DMDSe) in a wide type of environmental samples, such as soils, sediments, sewage sludges and plants where methylation can take place.Selenium determination by hydride-generation (HG) techniques requires its presence as Se(IV). Consequently, inorganic speciation by hydride generation techniques is done by first determining Se(IV) and then, after reduction of Se (VI) to Se(IV), the total selenium. Therefore, the concentration of Se (VI) is evaluated as the difference between total inorganic selenium and Se(IV). In the present work it could be demonstrated that DMSe and DMDSe are forming other volatile species by reaction with sodium borohydride, applying the same reduction condition as for inorganic selenium. These species are subsequently detected by several atomic techniques (atomic absorption AAS, atomic fluorescence AFS and inductively coupled plasma-mass spectrometry ICP-MS). The error that their presence can cause in determination of inorganic selenium has been evaluated. The magnitude of this error depends on the specific analytical detector used.The coupling of pervaporation-atomic fluorescence is proposed for the identification of these species and pervaporation-gas chromatography-atomic fluorescence for their individual quantification.  相似文献   

15.
In this work, a reliable method is described for speciation of soluble inorganic selenium ions, Se(IV) and Se(VI), which combines an uptake process by using living bacterial cells and electrothermal atomic absorption spectrometry (ETAAS). A selective retention of either Se(IV) or Se(IV) plus Se(VI) can be carried out by using the uptake system made up of either Pseudomonas putida or Escherichia coli strains cultivated in a culture medium based on glucose (P. putida) and glucose plus dipotassium phosphate (E. coli) mixed together with the original sample solution containing the selenium species. Discrimination between inorganic selenium species is possible by combining the optimization of the bacterial cell, the growth conditions and the relative rates of their retention from the sample. In the general procedure, an equilibrium between the analyte in the solution and the uptake system is allowed to be established, and then the concentration of selenium is determined directly in the biomass by slurry sampling ETAAS. Nonetheless, a theoretical model is proposed to describe the retention process by the living bacterial cells, which also provides a feasible quantification of the extraction process before the adsorption equilibrium is reached and whenever the agitation conditions and the sampling time are under control. The detection limits for the inorganic selenium species at the best retention conditions are of 5.7 ng Se(IV) ml(-1) for P. putida and 6.1 ng Se(IV) ml(-1) and 6.3 ng Se(VI) ml(-1) for E. coli. The relative standard deviations of the adsorption/determination process are 2.9-6.3%.  相似文献   

16.
This paper presents a new method for the simultaneous speciation analysis of arsenic (As(III)-arsenite, As(V)-arsenate, DMA-dimethylarsinic acid, MMA-methylarsonic acid, and AsB-arsenobetaine) and selenium (Se(IV)-selenite, Se(VI)-selenate, Se-Methionine, and Se-Cystine), which was applied to a variety of seafood and onion samples. The determination of the forms of arsenic and selenium was undertaken using the High-Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry (HPLC–ICP–MS) analytical technique. The separation of both organic and inorganic forms of arsenic and selenium was performed using two analytical columns: an anion exchange column, Dionex IonPac AS22, containing an alkanol quaternary ammonium ion, and a double bed cation–anion exchange guard column, Dionex Ion Pac CG5A, containing, as a first layer, fully sulfonated latex for cation exchange and a fully aminated layer for anion exchange as the second layer. The ammonium nitrate, at pH = 9.0, was used as a mobile phase. The method presented here allowed us to separate the As and Se species within 10 min with a suitable resolution. The applicability was presented with different sample matrix types: seafood and onion.  相似文献   

17.
《Analytical letters》2012,45(9):1511-1523
Anion and cation exchange high-performance liquid chromatography (HPLC) combined with inductively coupled plasma-mass spectrometry (ICP-MS) were used for speciation of selenium in supplements. All the parameters in the extraction, separation, and determination procedures were optimized. Recovery studies for the selenium species from the anion and cation exchange columns were performed and there were no analyte losses. Limits of detection for selenium(IV), selenium(VI), Se in selenomethionine, and Se in selenocystine were 0.85, 0.68, 0.84, and 0.99 nanogram per milliliter, respectively. Six brands were analyzed to identify and quantify the selenium species present, and the results found were compared with the values given on the labels. The selenium species matched the labeled species for four brands, whereas two brands were found to contain inorganic Se(VI) in contrast with the labeled claim of selenomethionine.  相似文献   

18.
Muñoz Olivas R  Donard OF 《Talanta》1998,45(5):1023-1029
Speciation of inorganic selenium using hydride generation method is a widespread analytical method nowadays. However, a reduction step of Se(VI) to Se(IV) is necessary as the hydride-forming species is HSeO(3)(-) (oxydation state+IV). This paper describes the development of a batch assisted microwave system allowing a rapid (<5 min) conversion of Se(VI) to Se(IV). Hydride generation is performed by a flow injection system and detection by ICP/MS. Detection limits of 6 and 8 pg for Se(IV) and for Se(VI) (by using a sample loop of 200 mul) respectively have been achieved. This method has been validated by participating in a European certification exercise for inorganic Se speciation in aqueous solutions.  相似文献   

19.
Analytical methods for the speciation of selenium compounds: a review   总被引:1,自引:0,他引:1  
Selenium, like sulphur, exists in the environment in several oxidation states and as a variety of inorganic and organic compounds. Dissolved inorganic selenium can be found in natural waters as selenide Se (–II), as colloidal elemental selenium Se (0), as selenite anions HSeO 3 and SeO 3 2– i.e. Se (+IV) and as the selenate anion (SeO 4 2– ) i.e. Se (+VI). Organic forms of selenium that may be found in organisms, air or in the aqueous environment, are volatile (methylselenides) or non volatile (trimethylselenonium ion, selenoamino acids and their derivatives). Knowledge of the different chemical forms and their environmental and biomedical distribution is important because of the dependence of bioavailability and toxicity on speciation. This paper reviews the different analytical methods used for the speciation of selenium compounds, with special attention to inorganic selenium and organoselenium species.  相似文献   

20.
Inorganic selenium species were determined in several parts of a freshwater fish of the speciesTilapia nilotica found breeding in disused tin-mining pools. The inorganic selenium species in the monazite-rich ores can enter the human food chain through the consumption of the fish. The Se(IV) and Se(VI) species were preconcentrated by solvent extraction with APCDT-CHCl3 before irradiation in a TRIGA Mk.II reactor. Total inorganic selenium species separation was done using Chelex-100 chelating resin. Quantitative interpretations of the distribution of inorganic selenium species in the fish are discussed with particular reference to the Se(IV)/Se(VI) ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号