首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 598 毫秒
1.
We report a simple soft chemical method for the synthesis of ZnS nanoparticles using varying concentration of cationic surfactant CTAB and examine its surface properties. Powder X-ray diffraction, UV-vis spectroscopy, photoluminescence spectroscopy, selective area electron diffraction, and transmission electron microscopy are used to characterize the as prepared ZnS nanoparticles. XRD and TEM measurements show the size of polydispersed ZnS nanoparticles is in the range of 2-5 nm with cubic phase structure. The photoluminescence spectrum of ZnS nanoparticles exhibits four fluorescence emission peaks centered at 387 nm, 412 nm, 489 nm and 528 nm showing the application potential for the optical devices. In Raman spectra of ZnS nanoparticles, the modes around 320, 615 and 700 cm−1 are observed.  相似文献   

2.
In this study, the surface of TiO2 nanoparticles was modified through plasma polymerization, which is a dry coating method at room temperature. The surface morphology of TiO2 nanoparticles was characterized by high-resolution transmission electron microscope (HRTEM). The dispersion behavior of TiO2 nanoparticles in water and ethyl glycol was investigated by laser size distribution and ultraviolet–visible absorption spectrum. TiO2 nanoparticles were coated with a thin film through plasma polymerization, which prevents the agglomeration and improves the dispersion behavior of TiO2 nanoparticles.  相似文献   

3.
WO3-coated TiO2 film was prepared by depositing TiO2 suspension containing small amounts of ammonium tungstate solution. The morphology and structure of the samples were characterized with high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and photoluminescence (PL) emission spectrum. The results showed that WO3 formed a coating layer on surface of TiO2 and significantly reduced the surface traps of TiO2 nanoparticles. Transient photovoltage and electrochemical impedance measurements (EIS) were employed to study the charge separation/recombination process. The results revealed that the charge recombination was greatly retarded and the electron lifetime was increased due to the coating layer of WO3. These observations showed good correlation with current-voltage analyses of dye-sensitized solar cell fabricated from these films, with WO3 overlayer resulting in an increase in open-circuit voltage of up to 37 mV and 11% improvement in overall device efficiency.  相似文献   

4.
A novel method – inverse microemulsion has been developed not only for synthesizing low cost TiO2 nanocrystals but also for the first time making these nanocrystals self-assemble into various nanoparticles at 85°C. By variation of the volume ratios of oil to water in reverse microemulsions, the morphologies of obtained samples turned from nanoclusters to nanospherules, then grew into nanodumbbells, and became nanorods at last. It could be observed by transmission electron microscope (TEM) directly. The resulting materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and high-resolution transmission electron microscope (HRTEM). The photocatalytic activity of TiO2 was tested with photodegradation of Methyl Orange (MO) in water. The catalyst consisting of nanorods showed the highest photocatalytic activity, which is due to its large surface area. Furthermore, the mechanism of self-assembly of TiO2 nanocrystals was discussed in detail.  相似文献   

5.
Anatase TiO2 nanowires with a diameter of 5-10 nm and length of 500 nm to 2 μm have been successfully synthesized by modifying TiO2 nanoparticles (P25) using the microwave heating method. The microwave power, reaction pressure, and reaction time for the synthesis of TiO2 nanowires were 500 W, 0.5-3.0 MPa (corresponding to a temperature range of 175-260), and 40-70 min, respectively. X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and the BET techniques were used to investigate the phase structures, morphologies, and specific surface areas of the TiO2 nanowires. The effects of reaction time, pressure, and different post-treatment processes on the microstructures of TiO2 nanowires were discussed. It has been shown that the microwave heating method is efficient in transforming TiO2 nanoparticles to anatase TiO2 nanowires.  相似文献   

6.
Composite Au/TiO2 nanoparticles were synthesized by laser ablation of gold plate in TiO2 sol. The nanoparticles were characterized by UV-visible spectroscopy, transmission electron microscopy, X-ray diffraction, and atomic force microscopy. The peak of surface plasmon is at 550 nm with a red shift of 30 nm compared with that of Au nanoparticles in water. Monolayers of composite Au/TiO2 nanoparticles were obtained by dip-coating technique. The XRD pattern of Au/TiO2 powders resembles a mixture of anatase TiO2 and gold.  相似文献   

7.
The synthesis of TiO2 nanorods with anatase structure has been achieved from the necking of truncated nanoparticles by oriented attachment using titanium ethylenediaminetetraacetic acid (EDTA) chelated complex as a molecular precursor. The preparation was carried out under mild conditions using a simple solvothermal process. The influence of EDTA over the growth of nanocrystallites and the various other factors which contribute to the development of 1D TiO2 nanostructure are investigated. At a relatively lower temperature, titania nanopowders are obtained, and the anatase phase crystallization is verified by wide angle X-ray diffraction. The evolution of rod-shaped TiO2 with tapered edges has been confirmed by transmission electron micrographs. The well aligned lattice fringes of TiO2 nanorod towards [001] direction is investigated by HRTEM. The SEM images show the surface configuration of overall aggregates of titania crystallites consisted of primary particles which are densely packed in an orderly texture. The moderate shift in the absorption band towards higher energy region of the absorption spectrum confirms the weak carrier confinement effect in the sample.  相似文献   

8.
Photocatalytic active titanium dioxide (TiO2)/zinc oxide (ZnO) composite was prepared by homogeneous hydrolysis of a mixture of titanium oxo-sulphate and zinc sulphate in aqueous solutions with thioacetamide and subsequent annealing at the temperature of 600 °C. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission microscopy (HRTEM). Nitrogen adsorption-desorption was used for surface area (Brunauer-Emmett-Teller—BET) and porosity determination. The photoactivity of the prepared TiO2/ZnO samples was assessed by the photocatalytic decomposition of Orange II dye in an aqueous slurry under irradiation of 254 and 365 nm wavelengths. Under the same conditions, the photocatalytic activity of a commercially available photocatalyst (Degussa P25), the pure anatase TiO2 nanoparticles and cubic ZnO were examined.  相似文献   

9.
TiO2 nanoparticles doped with two different concentrations of Cobalt, 0.02 and 0.04 mol, are prepared by sol–gel method. The crystalline phase of the doped and undoped nanoparticles and particle sizes are observed with X-ray diffraction and transmission electron microscope. FTIR confirms the bonding interaction of Co2+ in TiO2 lattice framework. The UV absorption spectra of the doped material shows two absorption peaks in the visible region related to d–d electronic transitions of Co2+ in TiO2 lattice. Compared to undoped TiO2 nanoparticles, the cobalt doped samples show a red shift in the band gap. Steady state photoluminescence spectra give emission peaks related to oxygen defects. The decrease in the intensity ratio of UV/visible emission peaks confirms distortion of structural regularity and formation of defects after doping. The intensity ratio of different visible emission peaks is nearly same for undoped and 0.02 Co2+. However, this ratio decreases profoundly at 0.04 Co2+, due to concentration quenching effect. Photoluminescence excitation spectra, recorded at 598 nm emission wavelength, give different excitation peaks associated with oxygen vacancies and Co2+. Time resolved photoluminescence spectra give longer decay time for doped samples, indicating longer relaxation of conduction band electrons on the defect and on dopant sites.  相似文献   

10.
A new type of composite photocatalysts (ZnO/TiO2–B) with Zinc oxide nanoparticles dispersed on boron doped titanium dioxide was prepared via a sol–gel method. The as-prepared powders were characterized by HRTEM, XRD, XPS, UV–vis DRS, and PL techniques. The results reveal that B3+ ions are doped into the TiO2 lattice in interstitial mode, while ZnO nanoparticles are dispersed on the surface of TiO2. The absorption of photocatalysts was extended into visible light region and the photogenerated electrons and holes were separated efficiently. Hence, ZnO/TiO2–B composite photocatalyst exhibits much better photocatalytic activity than those of pure TiO2 and TiO2–B on photodegradation of 4-chlorophenol under visible light irradiation.  相似文献   

11.
Titania (TiO2) nanorods have been synthesized with controlled size for dye-sensitized solar cells (DSSCs) via hydrothermal route at low hydrothermal temperature of 100 °C for 24 h. The titania nanorods were characterized using XRD, SEM, TEM/HRTEM, UV-vis Spectroscopy, FTIR and BET specific surface area (S BET), as well as pore-size distribution by BJH. The results indicated that the bulk traps and the surface states within the TiO2 nanorods films have enhanced the efficiency of DSSCs. The size of the titania nanorods was 6.7 nm in width and 22 nm in length. The high surface area can provide more sites for dye adsorption, while the fast photoelectron-transfer channel can enhance the photogenerated electron transfer to complete the circuit. The specific surface area S BET was 77.14 m2?g?1 at the synthesis conditions. However, the band gap energy of the obtained titania nanorods was 3.2 eV. The oriented nanorods with appropriate lengths are beneficial in improving the electron transport property and thus leading to the increase of photocurrent, together enhancing the power conversion efficiency. A nearly quantitative absorbed photon-to-electrical current conversion achieved upon excitation at wave length of 550 nm and the power efficiency was enhanced from 5.6 % for commercial TiO2 nanoparticles Degussa (P25) cells to 7.2 % for TiO2 nanorods cells under AM 1.5 illumination (100 mW?cm?2). The TiO2 cells performance was improved due to their high surface area, hierarchically mesoporous structures and fast electron-transfer rate compared with the Degussa (P25).  相似文献   

12.
Samarium-doped calcium fluoride (CaF2) nanoparticles were synthesized by the co-precipitation method and characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), optical absorption and photoluminescence (PL) techniques. The PXRD patterns confirmed the cubic crystallinity of the synthesized nanoparticles. The average particle size estimated using Scherer's formula was ~20?nm. The purity of the synthesized nanoparticles was confirmed by the FTIR spectrum. The morphological features studied using SEM revealed that the nanoparticles were agglomerated and porous. The optical absorption spectrum showed a strong and prominent absorption peak at ~264?nm and a weak one at ~212?nm. The PL spectrum showed broad and prominent emissions with peaks at ~387 and 532?nm along with weak emissions at 573 and 605?nm.  相似文献   

13.
In this work, ZnO thin films covered by TiO2 nanoparticles (labeled as TiO2-ZnO thin films) were prepared by electron beam evaporation. The influence of annealing temperature on the photoluminescence property of the samples was studied. The structures and surface morphologies of the samples were analyzed by X-ray diffraction (XRD) and atomic force microscope, respectively. The photoluminescence was used to investigate the fluorescent properties of the samples. The measurement results show that the ultraviolet emission of ZnO thin films is largely enhanced after they are covered by TiO2 nanoparticles, while the green emission is suppressed. However, when the annealing temperature is relatively high (≥500 °C), the intensity of ultraviolet emission drops off and a violet emission peak along with a blue emission peak appears. This is probably connected with the atomic interdiffusion between TiO2 nanoparticles and ZnO thin film. Therefore, selecting a suitable annealing temperature is a key factor for obtaining the most efficient ultraviolet emission from TiO2-ZnO thin films.  相似文献   

14.
Anatase TiO2 nanoparticles were covalently anchored onto acid-treated multi-walled carbon nanotubes (MWNTs) through a nanocoating-hydrothermal process to obtain TiO2-MWNTs nanocomposites. The composition and structural properties of the nanocomposites were characterized by XRD, BET, TG, TEM, HRTEM, EDX, XPS, and FTIR, and the formation of ester-bond linkage between TiO2 nanoparticles and MWNTs was demonstrated. The enhanced photocatalytic activity of TiO2-MWNTs nanocomposites was probed by photodegradation reaction of methylene blue under visible-light irradiation.  相似文献   

15.
TiO2 nanowires were grown on titanium foil by an alkali hydrothermal growth method. The as-synthesized nanowires are structurally uniform with diameters of 50-100 nm and lengths of up to a few micrometers. The as-prepared TiO2 nanowires were coated with Ag nanoparticles by reducing AgNO3 in solution. The experimental results indicate that the Ag nanoparticles can aggregate together on the surfaces of TiO2 nanowires by interconnection between nanoparticles. The degree of aggregation of Ag nanostructures can be controlled by changing the concentrations of Ag nanoparticles. The as-prepared nanostructures exhibit a wide optical absorption from 387 to 580 nm that can be easily tuned by controlling the degree of aggregation of Ag nanostructures. The results reveal that optical properties of the Ag-coated TiO2 nanowires can be enhanced by plasmon coupling of Ag nanoparticles. The as-prepared nanostructures may find potential applications in the field of solar cells.  相似文献   

16.
The synthesis of Cu doped ZnS nanoparticles inside the pore of an inorganic silica gel matrix is presented. The synthesized nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). X-ray diffraction pattern reveals the crystalline wurtzite phase of ZnS. The existence of silica gel in modeling morphologies of the nanoparticles was characterized using Fourier transform infrared (FTIR) spectrometer. Thickness of the silica shell was also calculated. UV- absorption spectrum shows the appearance of an absorption peak at 273 nm which confirms the blue shift as compared to that of bulk ZnS. The photoluminescence (PL) emission spectrum of the sample showed a broad band in the range 465-510 nm due to the transition from the conduction band edge of ZnS nanocrystals to the acceptor like t2 state of Cu.  相似文献   

17.
A facile surface coating of aluminum (Al) nanoparticles with various dispersants by using a wet ball milling method is reported. Various mixtures of Al nanoparticles (d = 30–130 nm) and dispersants in solvent were ball milled. The excellent surface coating was observed with coating thickness ranging from 10 to 13 nm. The resulting good colloidal stability confirmed by both visual inspection of colloidal precipitation and Turbiscan backscattering was attributed to a stable dispersant organic layer formed on Al nanoparticle surfaces after ball milling as observed in HRTEM images. This method can be extended to the synthesis of a variety of any other metallic nano-colloidal solutions.  相似文献   

18.
Nanostructure titanium dioxide (TiO2) has been synthesized by hydrolysis of titanium tetrachloride in aqueous solution and Ag-TiO2 nanoparticles were synthesized by photoreduction method. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared (FT-IR) and UV-vis absorption spectroscopy. The experimental results showed that the sizes of the synthesized TiO2 and Ag-TiO2 particles are in the range of 1.9-3.2 nm and 2-10 nm, respectively. Moreover, Ag-TiO2 nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO2. The positive effect of silver on the photocatalytic activity of TiO2 may be explained by its ability to trap electrons. This process reduces the recombination of light generated electron-hole pairs at TiO2 surface and therefore enhances the photocatalytic activity of the synthesized TiO2 nanoparticles. The effects of initial dye and nanoparticle concentrations on the photocatalytic activity have been studied and the results demonstrate that the dye photodegradation follows pseudo-first-order kinetics. The observed maximum degradation efficiency of SO is about 60% for TiO2 and 96% for Ag-TiO2.  相似文献   

19.
In this work the preparation, characterization and photoluminescence studies of pure and copper-doped ZnS nanophosphors are reported, which are prepared by using solid-state reaction technique at a temperature of 100 °C. The as-obtained samples were characterized by X-ray diffraction (XRD) and UV-VIS Reflectance spectroscopy. The XRD analysis confirms the formation of cubic phase of undoped as well as Cu2+-doped ZnS nanoparticles. Furthermore it shows that the average size of pure as well as copper-doped samples ranges from 15 to 50 nm. The room-temperature PL spectra of the undoped ZnS sample showed two main peaks centered at around 421 and 450 nm, which are the characteristic emissions of interstitial zinc and sulfur vacancies, respectively. The PL of the doped sample showed a broad-band emission spectrum centered at 465 nm accompanied with shoulders at around 425, 450 and 510 nm, which are the characteristic emission peaks of interstitial zinc, sulfur vacancies and Cu2+ ions, respectively. Our experimental results indicate that the PL spectrum confirms the presence of Cu2+ ions in the ZnS nanoparticles as expected.  相似文献   

20.
Vibrational spectra of ultrafine (~1.8 nm) CdS x Se1?x colloidal nanoparticles (NPs) are studied by resonant Raman scattering (RRS). The detected difference of the shape and spectral position of the longitudinal optical vibration band in comparison with the spectrum of slightly larger NPs (≥ 2 nm) is explained by the dominance of surface atoms as their fraction increases above 50%. The correlation of experimental results with ab initio calculated vibrational spectra and with vibration anharmonicity enhancement as the NP size decreases is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号