首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionic complexes [C5H5Co(L)(Ph2PMe)I]+ [I]- (L = Ph3P and Ph2PMe) were prepared by the reactions of cyclopentadienyl(triphenylphosphine)cobalt and cyclopentadienyl(methyldiphenylphosphine)cobalt diiodides with methyldiphenylphosphine. The treatment of these complexes with sodium tetraphenylborate results in the formation of [C5H5Co(L)(Ph2PMe)I]+[BPh4]- compounds.  相似文献   

2.
The intracomplex conversion of (2-diphenylphosphanoethyl)cyclopentadienyl zirconium and titanium complexes into the corresponding 2-phosphinothioyl and 2-phosphinoyl derivatives, viz., (η5-C5H5)[η 5-C5H4CH2CH2P(S)Ph2]ZrCl2, [η5-C5H4CH2CH2P(S)Ph2]ZrCl3, [η51C5H4CH2CH2P(O)Ph2]ZrCl3·THF, and [η51-C5H4CH2CH2P(O)Ph2]TiCl3 (7), was performed. The NMR spectroscopy data revealed the following order of the coordination ability of the functional groups with respect to the Zr center: Ph2P=O > Ph2P > Ph2P=S. An analogous order was found for the monodentate ligands (Ph3P=O > Ph3P > Ph3P=S) with respect to (η5-C5H5)ZrCl3. The molecular structure of complex 7 was established by X-ray diffraction analysis. Coordination of the Ph2P=O group to the titanium atom was found retained both in the crystalline state and solution.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 116–122, January, 2005.  相似文献   

3.
The mixed phosphine–phosphine oxide Ph2PCH2CH2P(O)Ph2 (dppeO) reacts with either trans-[PdCl2(PhCN)2], Na2[PdCl4] or trans-[PdCl2(DMSO)2] to give trans-[PdCl2{1-Ph2PCH2CH2P(O)Ph2}2]. Treatment of the latter with the metal chlorides, MCl2 · nH2O (M = Mn, Cu, Co, Zn, Hg; n = 4, 2, 6, 1, 0, respectively) or with Me2SnCl2 or SnCl4 · 5H2O, or with UO2(NO3)2 · 6H2O or UO2(OAc)2 · 2H2O gives heterobimetallic complexes: trans-[PdCl2{-Ph2PCH2CH2P(O)Ph2}2MX2] · nH2O. The cobalt complex (MX2 = CoCl2) was unstable in solution (MeOH or EtOH/CHCl3), and reverts to trans-[PdCl2{1-Ph2PCH2CH2P(O)Ph2}2] and CoCl2. trans-[PdCl2{1-Ph2PCH2CH2P(O)Ph2}2] does not apparently react with either NiCl2 · 6H2O or CdCl2 · 2.5H2O.  相似文献   

4.
Synthesis and Characterization of 2‐O‐Functionalized Ethylrhodoximes and ‐cobaloximes 2‐Hydroxyethylrhodoxime and ‐cobaloxime complexes L—[M]—CH2CH2OH (M = Rh, L = PPh3, 1 ; M = Co, L = py, 2 ; abbr.: L—[M] = [M(dmgH)2L] (dmgH2 = dimethylglyoxime, L = axial base) were obtained by reaction of L—[M] (prepared by reduction of L—[M]—Cl with NaBH4 in methanolic KOH) with BrCH2CH2OH. H2O—[Rh], prepared by reduction of H[RhCl2(dmgH)2] with NaBH4 in methanolic KOH, reacted with BrCH2CH2OH followed by addition of pyridine yielding py—[Rh]—CH2CH2OH ( 3 ). Complexes 1 and 3 were found to react with (Me3Si)2NH forming 2‐(trimethylsilyloxy)ethylrhodoximes L—[Rh]—CH2CH2OSiMe3 (L = PPh3, 4 ; L = py, 5 ). Treatment of complex 1 with acetic anhydride resulted in formation of the 2‐(acet oxy)ethyl complex Ph3P—[Rh]—CH2CH2OAc ( 6 ). All complexes 1 — 6 were isolated in good yields (55—71 %). Their identities were confirmed by NMR spectroscopic investigations ( 1 — 6 : 1H, 13C; 1 , 4 , 6 : 31P) and for [Rh(CH2CH2OH)(dmgH)2(PPh3)]·CHCl3·1/2H2O ( 1 ·CHCl3·1/2H2O) and py—[Rh]—CH2CH2OSiMe3 ( 5 ) by X‐ray diffraction analyses, too. In both molecules the rhodium atoms are distorted octahedrally coordinated with triphenylphosphine and the organo ligands (CH2CH2OH and CH2CH2OSiMe3, respectively) in mutual trans position. Solutions of 1 in dmf decomposed within several weeks yielding a hydroxyrhodoxime complex “Ph3P—[Rh]—OH”. X‐ray diffraction analysis exhibited that crystals of this complex have the composition [{Rh(dmg)(dmgH) (H2O)(PPh3)}2]·4dmf ( 7 ) consisting of centrosymmetrical dimers. The rhodium atom is distorted octahedrally coordinated. Axial ligands are PPh3 and H2O. One of the two dimethylglyoximato ligands is doubly deprotonated. Thus, only one intramolecular O—H···O hydrogen bridge (O···O 2.447(9)Å) is formed in the equatorial plane. The other two oxygen atoms of dmgH and dmg2—, respectively, act as hydrogen acceptors each forming a strong (intermolecular) O···H′—O′ hydrogen bridge to the H′2O′ ligand of the other molecule (O···O′ 2.58(2)/2.57(2)Å).  相似文献   

5.
Abstract

The interaction of the sodium salts of thiosemicarbazones with diphenylantimony chloride in 1:1 molar ratio in benzene solution lead to the formation of derivatives, Ph2Sb[SC(NH2)NN: C(R)R′] where R = H; R′ [dbnd] C6H5, CH3OC6H4, C6H5CH[dbnd]CH, and R′ [dbnd] CH3; R′[dbnd]C6H5, CH3OC6H4, C6H4CH3, respectively. The resulting complexes have been characterised on the basis of elemental analyses and molecular weight determination. The mode of bonding of the ligands with the metal atom has been proposed on the basis of I.R., 1H and 13C NMR studies. All these ligands are found to behave as monofunctional bidentate moiety in these complexes.  相似文献   

6.
Summary Palladium(II) halides react with triphenylphosphine sulphide or selenide, 1,1-methylenebis(diphenylphosphine sulphide or selenide) (MDPS or MDPSe), 1,3-trimethylene-bis-(diphenylphosphine selenide) (PDPSe) or tetramethyldiphosphine disulphide (TMDPS) forming complexes [PdBr2 · 2L], [2PdBr2 · 3L] (L=Ph3PS or Ph3PSe), [PdX2 · L] (X=Cl, L =PDPSe; X=Br, L=MDPS or MDPSe; X=Cl or Br, L=TMDPS) and [3PdBr2 · 2TMDPS]. Characterisation and stereochemical assignments have been made through elemental analyses, i.r., far i.r. and electronic spectra, magnetic susceptibility and molar conductance data and tga studies. Bidentate ligand complexes have higher thermal stability than the monodentate ligand complexes. Chelation or bridging modes of the bidentate ligands have been demonstrated.  相似文献   

7.
The triply chloro-bridged binuclear complexes [Ph3X=O···H···O=XPh3][Ru2Cl7(XPh3)2]·0.5(CH2Cl2)(H2O) (X = As or P) were obtained from [RuCl3(XPh3)2DMA]·DMA (DMA = dimethylacetamide) CH2Cl2/Et2O solution. The structures were characterized by X-ray diffraction studies. The complexes are formed from two Ru atoms bridged by three chloride anions. The two ruthenium atoms are also coordinated to two non-bridging Cl atoms and an AsPh3 or PPh3 ligand respectively. As an interesting feature, the cations of these complexes are protons, trapped in a very short hydrogen bond between two triphenylarsine or triphenylphosphine oxide molecules.  相似文献   

8.
Six new complexes of tin(IV) halides with phosphorus‐containing ligands have been fully characterized by single‐crystal X‐ray diffraction at low temperature. Three of the compounds, derived from the diphosphanes bis‐(diphenylphosphino)methane or bis‐(dicyclohexylphosphino)methane, have a novel zwitterionic structure, with five Cl ligands and one unidentate phosphorus‐containing ligand on tin, together with a proton on the second phosphorus atom of the potentially bidentate ligand; these are Cl5SnP(Ph2)CH2PPh2H+ ( 1 ), Cl5SnOP(Ph2)CH2‐PPh2H+ ( 2 ), and Cl5SnOP(cy2)CH2Pcy2H+ ( 3 ). The other three complexes have a bidentate donor attached to the SnX4 moiety; they comprise Cl4SnOP(Ph2)‐(CH2)2PPh2O ( 4 ), a derivative of bis‐(diphenylphosphino)ethane dioxide, I4SnOP(Ph2)CH2PPh2O ( 5 ), a similar derivative of bis‐(diphenylphosphino)‐methane dioxide, and the very unusual Br4SnAs‐(Ph2)(CH2)2PPh2O ( 6 ), with coordination to tin by As and O. Since the starting material for the last compound was Ph2As(CH2)2PPh2, this result illustrates well the more facile oxidation of P(III) than As(III). © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:136–143, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20525  相似文献   

9.
Summary The mixed phosphine-phosphine oxides Ph2P(CH2)n-P(O)Ph2 (n = 1 or 2) react with K2PtCl4 to give cis-{PtCl2- 1-Ph2P(CH2) n P(O)Ph2]2}. Treatment of the latter (n = 2) with transition metal chlorides MCl2·nH2O, or with Me2SnCl2, SnCl4·5H2O, Th(NO3)4·xH2O or UO2(NO3)2· 6H2O, gives novel heterobimetallic complexes identified as cis-{PtCl2[-Ph2P(CH2)2P(O)Ph2]2MX2}·nH2O. Attempts to prepare similar heterobimetallic complexes using the starting complexes {PtX2[ 1-Ph2PCH2P(O)-Ph2]2} (X = C1), cis- or CN, trans-] were unsuccessful. Possible reasons for this are discussed.  相似文献   

10.
Complex formation of a new group of ligands with the lithium ion has been studied in THF. Stability constants of the [LiL]+ complexes have been determined. It was found that the R-S group does not take part in the coordination; the complex-forming capability of the R-S=O group with the lithium ion is no higher than that of Ph2P=O or (EtO)2P=O.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2216–2218, October, 1989.  相似文献   

11.
The synthesis of calcium complexes ligated by three different chiral iminophosphonamide ligands, L- H ( L =[Ph2P{N(R)CH(CH3)Ph}2]), L′ -H ( L′ =[Ph2P{NDipp}{N(R)CH(CH3)Ph}]), (Dipp=2,6-iPr2C6H3), and L′′ -H ( L′′ =[Ph2P{N(R)CH(CH3)naph}2]), (naph=naphthyl) is presented. The resulting structures [ L 2Ca], [ L′ 2Ca], and [ L′′ 2Ca] represent the first examples of enantiopure homoleptic calcium complexes based on this type of ligands. The calcium complexes show blue–green photoluminescence (PL) in the solid state, which is especially bright at low temperatures. Whereas the emission of [ L′′ 2Ca] is assigned to the fluorescence of naphthyl groups, the PL of [ L 2Ca] and [ L′ 2Ca] is contributed by long-lived phosphorescence and thermally activated delayed fluorescence (TADF), with a strong variation of the PL lifetimes over the temperature range of 5–295 K. Furthermore, an excellent catalytic activity was found for these complexes in hydroboration of ketones at room temperature, although no enantioselectivity was achieved.  相似文献   

12.
The synthesis and crystal structures of the alkali-metallated organophosphine oxides [{Ph2P(O)CH2}K · 18-crown-6] (1) and [{Ph2P(O)CH2}Na · 15-crown-5] (2) are reported. In addition the insertion reaction of an isonitrile into the C-Li bond of [{Ph2P(O)CH2}Li] is reported and the crystal structure of the resulting tetrameric complex [Ph2P(O)CHCHN(Cy)Li]4 (3) (Cy = Cyclohexyl) described.  相似文献   

13.
Abstract

The reaction of Ph2PCH2PPh2 (dppm) with 4-methylphenacyl bromide and 2-(bromoacetyl)naphthalene in chloroform produce the new phosphonium salts [Ph2PCH2PPh2CH2C(O)C6H4Me]Br (1) and [Ph2PCH2PPh2CH2C(O)C10H7]Br (2). Further, by reaction of the monophosphonium salts of dppm with the strong base Et3N the corresponding bidentate phosphorus ylides, Ph2PCH2P(Ph)2 = C(H)C(O)C6H4Me (3) and Ph2PCH2P(Ph)2 = C(H)C(O)C10H7 (4) were obtained. The reaction of these ligands with mercury(II) halides in dry methanol led to the formation of the mononuclear complexes {HgX 2[(Ph2PCH2PPh2C(H)C(O)C6H4Me)]} [X = Cl (5), Br (6), and I (7)] and {HgX 2[(Ph2PCH2PPh2C(H)C(O)C10H7)]} [X = Cl (8), Br (9), and I (10)]. Characterization of the obtained compounds was performed by elemental analysis, IR, 1H, 31P, and 13C NMR spectra. The structure of compounds 3 and 10 are unequivocally determined by single crystal X-ray diffraction techniques. X-ray analysis of 10 reveals the presence of mononuclear complex containing Hg atom in a distorted tetrahedral environment. In all complexes, the title ylides are coordinated through the ylidic carbon and the phosphine phosphorus. Computational studies on ligand 4 and complexes 8, 9, and 10 at DFT (B3LYP) level of theory are also reported. It was shown that the formation of P,C-coordinated 1+1 complex 10 is energetically more favored than corresponding P,P-coordinated 1+2 product.

[Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the following free supplemental files: Additional figures]  相似文献   

14.
The new symmetrical diphosphonium salt [Ph2P(CH2)2PPh2(CH2C(O)C6H4Br)2] Br2 ( S ) was synthesized in the reaction of 1,2‐bis (diphenylphosphino) ethane (dppe) and related ketone. Further treatment with NEt3 gave the symmetrical α‐keto stabilized diphosphine ylide [Ph2P(CH2)2PPh2(CHC(O)C6H4Br)2] ( Y 1 ). The unsymmetrical α‐keto stabilized diphosphine ylide [Ph2P(CH2)2PPh2(CHC(O)C6H4Br)] ( Y 2 ) was synthesized in the reaction of diphosphine in 1:1 ratio with 2.3′‐dibromoacetophenone, then treatment with NEt3. The reaction of dibromo (1,5‐cyclooctadiene)palladium (II), [PdBr2(COD)] with this ligand ( Y 1 ) in equimolar ratio gave the new C,C‐chelated [PdBr2(Ph2P(CH2)2PPh2(C(H)C(O)C6H4Br)2)] ( 1 ) and with unsymmetrical phosphorus ylide [Ph2P(CH2)2PPh2C(H)C(O)C6H4Br] ( Y 2 ) gave the new P, C‐chelated palladacycle complex [PdBr2(Ph2P(CH2)2PPh2C(H)C(O)Br)] ( 2 ). These compounds were characterized successfully by FT‐IR, NMR (1H, 13C and 31P) spectroscopic methods and the crystal structure of Y 1 and 2 were elucidated by single crystal X‐ray diffraction. The results indicated that the complex 1 was C, C‐chelated whereas complex 2 was P, C‐chelated. These air/moisture stable complexes were employed as efficient catalysts for the Mizoroki‐Heck cross‐coupling reaction of several aryl chlorides, and the Taguchi method was used to optimize the yield of Mizoroki‐Heck coupling. The optimum condition was found to be as followed: base; K2CO3, solvent; DMF and loading of catalyst; 0.005 mmol.  相似文献   

15.
The products of the reactions between potassium hexachloroplatinate {K2PtCl6} and 18-crown-6 or dibenzo-18-crown-6 in acetonitrile were studied. Pure crystalline compounds [2K·2(18-crown-6)· 2CH3CN]2+·[PtCl6]2-·2H2O, [2K·dibenzo-18-crown-6·CH3CN]2 +·[PtCl6]2 -, and [2K·dibenzo-18-crown-6·CH3CN]2 +·[Pt2Cl10]2 - were obtained. Physicochemical properties of these compounds were studied, and their near- and far-IR IR spectra and thermogravimetric curves were considered. The composition of the complexes is determined by metal:ligand molar ratio and crown ether nature. It was found that acetonitrile is coordinated via the nitrogen atom.  相似文献   

16.
A convenient method of synthesis of phosphoryl-substituted podands with dipehnylphosphorylmethyl end groups of the general formula Ph2P(O)CH2O(CH2CH2O)nCH2P(O)Ph2 (Ln, n = 0–6) is described. The stability constants of the complexes of the podands with alkali metal 2,4-dinitrophenolates were determined by conductometry. The ion-selective properties of the podands with respect to alkali and alkaline-earth metal cations were assessed by ionometry. The crystal structure of 1,3-bis(diphenylphosphoryl)-2-oxapropane was established by X-ray diffraction analysis.  相似文献   

17.
The phosphine oxide complexes [GaX3(Me3PO)] and [(GaX3)2{μ-o-C6H4(CH2P(O)Ph2)2}] have been prepared and characterised by microanalysis, IR and multinuclear NMR (1H, 13C{1H}, 31P{1H} and 71Ga) spectroscopy. The structures of [GaCl3(Me3PO)], [(GaBr3)2{μ-o-C6H4(CH2P(O)Ph2)2}] and of the ionic product [GaI2(Me3PO)2][GaI4] have been determined and show that the Lewis acidity of the gallium halides towards phosphinoyl ligands diminishes as the halogen becomes heavier. The [GaX3(Ph3E)] (X = Cl, Br or I; E = P or As) and [(GaX3)2{μ-o-C6H4(CH2PPh2)2}] (X = Br or I) have been prepared and their structural and spectroscopic properties compared with those of the phosphinoyl complexes. The results, and competitive solution NMR studies, show that Ga(III) binds the hard R3PO in preference to the softer phosphine or arsine ligands. Hydrolysis of gallium(III) phosphines is shown to lead to [R3PH][GaX4], but in contrast to some other p-block halides, GaX3 do not promote air-oxidation of R3P to R3PO.  相似文献   

18.
The room temperature syntheses of new chelating acyl palladium(II) complexes, [Pd(μ-Cl)(C(O)C9H6N)]2 and [Pd(μ-Cl)(C(O)C6H4N(CH3)2]2, derived from quinoline-8-carbaldehyde and 2-(dimethylamino)banzaldehyde are described. These chloro bridged dimers may be cleaved with neutral phosphine and nitrogen ligands, L, to give the monomeric [PdCl(C(O)C9H6N)L] and [PdCl(C(O)C6H4N(CH3)2)L] compounds. 1H-, 13C- and 31P-NMR data for the new complexes are reported.  相似文献   

19.
The reactions of tetraphenylbismuthonium and -stibonium salts Ph4EX (E = Bi, Sb; X = I, OSO2 (C6H3(CH3)2-2,5), OSO2C6H3(OH-4)(COOH-3)) with bismuth triiodide in acetone afford complexes [Ph4Bi]+[PhBi(C5H5N)I3]-, [(Ph4BiO)2S(O){2,5-(CH3)2C6H3S(O)} [Ph2Bi2I6]2–, [Ph4Sb [Bi4I16]4-·2(CH3)2C=O, and [Ph4Sb] 3+ + [Bi5I18]3-, whose structural units, according to the X-ray diffraction data, are tetraphenylbismuthonium (-stibonium) cations and mono-, di-, tetra-, and pentanuclear anions, respectively.  相似文献   

20.
Transition metal complexes containing two types of ligands: 5-phenyl-1,3,4-oxadiazole-2-thione ion (L) and tertiary phosphines, have been prepared. The complexes, [ML2A2] [M = Pd or Pt; A = PPh3 or Ph2PCH2CH2P(O)Ph2] and [ML2B] (M = Co, Ni, Pd or Pt; B = Ph2PCH2PPh2 or Ph2PCH2CH2PPh2), were characterized by elemental analysis, molar conductance, i.r., u.v.–vis., 31P-n.m.r., magnetic susceptibility measurements and mass spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号