首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In Akrotirianakis and Floudas (2004) we presented the theoretical foundations of a new class of convex underestimators for C 2 nonconvex functions. In this paper, we present computational experience with those underestimators incorporated within a Branch-and-Bound algorithm for box-conatrained problems. The algorithm can be used to solve global optimization problems that involve C 2 functions. We discuss several ways of incorporating the convex underestimators within a Branch-and-Bound framework. The resulting Branch-and-Bound algorithm is then used to solve a number of difficult box-constrained global optimization problems. A hybrid algorithm is also introduced, which incorporates a stochastic algorithm, the Random-Linkage method, for the solution of the nonconvex underestimating subproblems, arising within a Branch-and-Bound framework. The resulting algorithm also solves efficiently the same set of test problems.  相似文献   

2.
For solving global optimization problems with nonconvex feasible sets existing methods compute an approximate optimal solution which is not guaranteed to be close, within a given tolerance, to the actual optimal solution, nor even to be feasible. To overcome these limitations, a robust solution approach is proposed that can be applied to a wide class of problems called D(C){{\mathcal {D}(\mathcal {C})}}-optimization problems. DC optimization and monotonic optimization are particular cases of D(C){{\mathcal {D}(\mathcal {C})}}-optimization, so this class includes virtually every nonconvex global optimization problem of interest. The approach is a refinement and extension of an earlier version proposed for dc and monotonic optimization.  相似文献   

3.
In Floudas and Visweswaran (1990, 1993), a deterministic global optimization approach was proposed for solving certain classes of nonconvex optimization problems. An algorithm, GOP, was presented for the solution of the problem through a series ofprimal andrelaxed dual problems that provide valid upper and lower bounds respectively on the global solution. The algorithm was proved to have finite convergence to an -global optimum. In this paper, new theoretical properties are presented that help to enhance the computational performance of the GOP algorithm applied to problems of special structure. The effect of the new properties is illustrated through application of the GOP algorithm to a difficult indefinite quadratic problem, a multiperiod tankage quality problem that occurs frequently in the modeling of refinery processes, and a set of pooling/blending problems from the literature. In addition, extensive computational experience is reported for randomly generated concave and indefinite quadratic programming problems of different sizes. The results show that the properties help to make the algorithm computationally efficient for fairly large problems.  相似文献   

4.
We study the sensor cover energy problem (SCEP) in wireless communication—a difficult nonconvex problem with nonconvex constraints. A local approach based on DC programming called DCA was proposed by Astorino and Miglionico (Optim Lett 10(2):355–368, 2016) for solving this problem. In the present paper, we propose a global approach to (SCEP) based on the theory of monotonic optimization. By using an appropriate reformulation of (SCEP) we propose an algorithm for finding quickly a local optimal solution along with an efficient algorithm for computing a global optimal solution. Computational experiments are reported which demonstrate the practicability of the approach.  相似文献   

5.
In this paper, we present a global optimization method for solving nonconvex mixed integer nonlinear programming (MINLP) problems. A convex overestimation of the feasible region is obtained by replacing the nonconvex constraint functions with convex underestimators. For signomial functions single-variable power and exponential transformations are used to obtain the convex underestimators. For more general nonconvex functions two versions of the so-called αBB-underestimator, valid for twice-differentiable functions, are integrated in the actual reformulation framework. However, in contrast to what is done in branch-and-bound type algorithms, no direct branching is performed in the actual algorithm. Instead a piecewise convex reformulation is used to convexify the entire problem in an extended variable-space, and the reformulated problem is then solved by a convex MINLP solver. As the piecewise linear approximations are made finer, the solution to the convexified and overestimated problem will form a converging sequence towards a global optimal solution. The result is an easily-implementable algorithm for solving a very general class of optimization problems.  相似文献   

6.
This paper presents a global optimization approach for solving signomial geometric programming problems. In most cases nonconvex optimization problems with signomial parts are difficult, NP-hard problems to solve for global optimality. But some transformation and convexification strategies can be used to convert the original signomial geometric programming problem into a series of standard geometric programming problems that can be solved to reach a global solution. The tractability and effectiveness of the proposed successive convexification framework is demonstrated by seven numerical experiments. Some considerations are also presented to investigate the convergence properties of the algorithm and to give a performance comparison of our proposed approach and the current methods in terms of both computational efficiency and solution quality.  相似文献   

7.
Classical robust statistical methods dealing with noisy data are often based on modifications of convex loss functions. In recent years, nonconvex loss-based robust methods have been increasingly popular. A nonconvex loss can provide robust estimation for data contaminated with outliers. The significant challenge is that a nonconvex loss can be numerically difficult to optimize. This article proposes quadratic majorization algorithm for nonconvex (QManc) loss. The QManc can decompose a nonconvex loss into a sequence of simpler optimization problems. Subsequently, the QManc is applied to a powerful machine learning algorithm: quadratic majorization boosting algorithm (QMBA). We develop QMBA for robust classification (binary and multi-category) and regression. In high-dimensional cancer genetics data and simulations, the QMBA is comparable with convex loss-based boosting algorithms for clean data, and outperforms the latter for data contaminated with outliers. The QMBA is also superior to boosting when directly implemented to optimize nonconvex loss functions. Supplementary material for this article is available online.  相似文献   

8.
Jia  Xiaoxi  Kanzow  Christian  Mehlitz  Patrick  Wachsmuth  Gerd 《Mathematical Programming》2023,199(1-2):1365-1415

This paper is devoted to the theoretical and numerical investigation of an augmented Lagrangian method for the solution of optimization problems with geometric constraints. Specifically, we study situations where parts of the constraints are nonconvex and possibly complicated, but allow for a fast computation of projections onto this nonconvex set. Typical problem classes which satisfy this requirement are optimization problems with disjunctive constraints (like complementarity or cardinality constraints) as well as optimization problems over sets of matrices which have to satisfy additional rank constraints. The key idea behind our method is to keep these complicated constraints explicitly in the constraints and to penalize only the remaining constraints by an augmented Lagrangian function. The resulting subproblems are then solved with the aid of a problem-tailored nonmonotone projected gradient method. The corresponding convergence theory allows for an inexact solution of these subproblems. Nevertheless, the overall algorithm computes so-called Mordukhovich-stationary points of the original problem under a mild asymptotic regularity condition, which is generally weaker than most of the respective available problem-tailored constraint qualifications. Extensive numerical experiments addressing complementarity- and cardinality-constrained optimization problems as well as a semidefinite reformulation of MAXCUT problems visualize the power of our approach.

  相似文献   

9.

This work attempts to combine the strengths of two major technologies that have matured over the last three decades: global mixed-integer nonlinear optimization and branch-and-price. We consider a class of generally nonconvex mixed-integer nonlinear programs (MINLPs) with linear complicating constraints and integer linking variables. If the complicating constraints are removed, the problem becomes easy to solve, e.g. due to decomposable structure. Integrality of the linking variables allows us to apply a discretization approach to derive a Dantzig-Wolfe reformulation and solve the problem to global optimality using branch-andprice. It is a remarkably simple idea; but to our surprise, it has barely found any application in the literature. In this work, we show that many relevant problems directly fall or can be reformulated into this class of MINLPs. We present the branch-and-price algorithm and demonstrate its effectiveness (and sometimes ineffectiveness) in an extensive computational study considering multiple large-scale problems of practical relevance, showing that, in many cases, orders-of-magnitude reductions in solution time can be achieved.

  相似文献   

10.
Robust optimization with simulated annealing   总被引:1,自引:0,他引:1  
Complex systems can be optimized to improve the performance with respect to desired functionalities. An optimized solution, however, can become suboptimal or even infeasible, when errors in implementation or input data are encountered. We report on a robust simulated annealing algorithm that does not require any knowledge of the problems structure. This is necessary in many engineering applications where solutions are often not explicitly known and have to be obtained by numerical simulations. While this nonconvex and global optimization method improves the performance as well as the robustness, it also warrants for a global optimum which is robust against data and implementation uncertainties. We demonstrate it on a polynomial optimization problem and on a high-dimensional and complex nanophotonic engineering problem and show significant improvements in efficiency as well as in actual optimality.  相似文献   

11.
Many local optimal solution methods have been developed for solving generalized geometric programming (GGP). But up to now, less work has been devoted to solving global optimization of (GGP) problem due to the inherent difficulty. This paper considers the global minimum of (GGP) problems. By utilizing an exponential variable transformation and the inherent property of the exponential function and some other techniques the initial nonlinear and nonconvex (GGP) problem is reduced to a sequence of linear programming problems. The proposed algorithm is proven that it is convergent to the global minimum through the solutions of a series of linear programming problems. Test results indicate that the proposed algorithm is extremely robust and can be used successfully to solve the global minimum of (GGP) on a microcomputer.  相似文献   

12.
Clusterwise regression consists of finding a number of regression functions each approximating a subset of the data. In this paper, a new approach for solving the clusterwise linear regression problems is proposed based on a nonsmooth nonconvex formulation. We present an algorithm for minimizing this nonsmooth nonconvex function. This algorithm incrementally divides the whole data set into groups which can be easily approximated by one linear regression function. A special procedure is introduced to generate a good starting point for solving global optimization problems at each iteration of the incremental algorithm. Such an approach allows one to find global or near global solution to the problem when the data sets are sufficiently dense. The algorithm is compared with the multistart Späth algorithm on several publicly available data sets for regression analysis.  相似文献   

13.
Natural basic concepts in multiple-objective optimization lead to difficult multiextremal global optimization problems. Examples include detection of efficient points when nonconvexities occur, and optimization of a linear function over the efficient set in the convex (even linear) case. Assuming that a utility function exists allows one to replace in general the multiple-objective program by a single, nonconvex optimization problem, which amounts to a minimization over the efficient set when the utility function is increasing. A new algorithm is discussed for this utility function program which, under natural mild conditions, converges to an -approximate global solution in a finite number of iterations. Applications include linear, convex, indefinite quadratic, Lipschitz, and d.c. objectives and constraints.  相似文献   

14.
焦红伟  陈永强 《应用数学》2008,21(2):270-276
本文对一类非凸规划问题(NP)给出一确定性全局优化算法.这类问题包括:在非凸的可行域上极小化有限个带指数的线性函数乘积的和与差,广义线性多乘积规划,多项式规划等.通过利用等价问题和线性化技巧提出的算法收敛到问题(NP)的全局极小.  相似文献   

15.
Convex relaxations can be used to obtain lower bounds on the optimal objective function value of nonconvex quadratically constrained quadratic programs. However, for some problems, significantly better bounds can be obtained by minimizing the restricted Lagrangian function for a given estimate of the Lagrange multipliers. The difficulty in utilizing Lagrangian duality within a global optimization context is that the restricted Lagrangian is often nonconvex. Minimizing a convex underestimate of the restricted Lagrangian overcomes this difficulty and facilitates the use of Lagrangian duality within a global optimization framework. A branch-and-bound algorithm is presented that relies on these Lagrangian underestimates to provide lower bounds and on the interval Newton method to facilitate convergence in the neighborhood of the global solution. Computational results show that the algorithm compares favorably to the Reformulation–Linearization Technique for problems with a favorable structure.  相似文献   

16.
Many nonconvex nonlinear programming (NLP) problems of practical interest involve bilinear terms and linear constraints, as well as, potentially, other convex and nonconvex terms and constraints. In such cases, it may be possible to augment the formulation with additional linear constraints (a subset of Reformulation-Linearization Technique constraints) which do not affect the feasible region of the original NLP but tighten that of its convex relaxation to the extent that some bilinear terms may be dropped from the problem formulation. We present an efficient graph-theoretical algorithm for effecting such exact reformulations of large, sparse NLPs. The global solution of the reformulated problem using spatial Branch-and Bound algorithms is usually significantly faster than that of the original NLP. We illustrate this point by applying our algorithm to a set of pooling and blending global optimization problems.  相似文献   

17.
The DC programming and its DC algorithm (DCA) address the problem of minimizing a function f=gh (with g,h being lower semicontinuous proper convex functions on R n ) on the whole space. Based on local optimality conditions and DC duality, DCA was successfully applied to a lot of different and various nondifferentiable nonconvex optimization problems to which it quite often gave global solutions and proved to be more robust and more efficient than related standard methods, especially in the large scale setting. The computational efficiency of DCA suggests to us a deeper and more complete study on DC programming, using the special class of DC programs (when either g or h is polyhedral convex) called polyhedral DC programs. The DC duality is investigated in an easier way, which is more convenient to the study of optimality conditions. New practical results on local optimality are presented. We emphasize regularization techniques in DC programming in order to construct suitable equivalent DC programs to nondifferentiable nonconvex optimization problems and new significant questions which have to be answered. A deeper insight into DCA is introduced which really sheds new light on DCA and could partly explain its efficiency. Finally DC models of real world nonconvex optimization are reported.  相似文献   

18.
 Multidimensional optimization problems where the objective function and the constraints are multiextremal non-differentiable Lipschitz functions (with unknown Lipschitz constants) and the feasible region is a finite collection of robust nonconvex subregions are considered. Both the objective function and the constraints may be partially defined. To solve such problems an algorithm is proposed, that uses Peano space-filling curves and the index scheme to reduce the original problem to a H?lder one-dimensional one. Local tuning on the behaviour of the objective function and constraints is used during the work of the global optimization procedure in order to accelerate the search. The method neither uses penalty coefficients nor additional variables. Convergence conditions are established. Numerical experiments confirm the good performance of the technique. Received: April 2002 / Accepted: December 2002 Published online: March 21, 2003 RID="⋆" ID="⋆" This research was supported by the following grants: FIRB RBNE01WBBB, FIRB RBAU01JYPN, and RFBR 01–01–00587. Key Words. global optimization – multiextremal constraints – local tuning – index approach  相似文献   

19.
The global solution of bilevel dynamic optimization problems is discussed. An overview of a deterministic algorithm for bilevel programs with nonconvex functions participating is given, followed by a summary of deterministic algorithms for the global solution of optimization problems with nonlinear ordinary differential equations embedded. Improved formulations for scenario-integrated optimization are proposed as bilevel dynamic optimization problems. Solution procedures for some of the problems are given, while for others open challenges are discussed. Illustrative examples are given.  相似文献   

20.
Motivated by weakly convex optimization and quadratic optimization problems, we first show that there is no duality gap between a difference of convex (DC) program over DC constraints and its associated dual problem. We then provide certificates of global optimality for a class of nonconvex optimization problems. As an application, we derive characterizations of robust solutions for uncertain general nonconvex quadratic optimization problems over nonconvex quadratic constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号