首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We determine the possible homogeneous weights of regular projective two-weight codes over \(\mathbb {Z}_{2^k}\) of length \(n>3\), with dual Krotov distance \(d^{\lozenge }\) at least four. The determination of the weights is based on parameter restrictions for strongly regular graphs applied to the coset graph of the dual code. When \(k=2\), we characterize the parameters of such codes as those of the inverse Gray images of \(\mathbb {Z}_4\)-linear Hadamard codes, which have been characterized by their types by several authors.  相似文献   

2.
We prove that for each prime p, positive integer \(\alpha \), and non-negative integers \(\beta \) and \(\gamma \), the Diophantine equation \(X^{2N} + 2^{2\alpha }5^{2\beta }{p}^{2\gamma } = Z^5\) has no solution with N, X, \(Z\in \mathbb {Z}^+\), \(N > 1\), and \(\gcd (X,Z) = 1\).  相似文献   

3.
Let \(a\ge 2\) be an integer and p prime number. It is well-known that the solutions of the Pell equation have recurrence relations. For the simultaneous Pell equations
$$\begin{aligned}&x^{2}-\left( a^{2}-1\right) y^{2} =1 \\&y^{2}-pz^{2} =1 \end{aligned}$$
assume that \(x=x_{m}\) and \(y=y_{m}\). In this paper, we show that if \(m\ge 3\) is an odd integer, then there is no positive solution to the system. Moreover, we find the solutions completely for \(5\le a\le 14\) in the cases when \(m\ge 2\) is even integer and \(m=1\).
  相似文献   

4.
In this paper, we study the torsion subgroup and rank of elliptic curves for the subfamilies of \(E_{m,p} : y^2=x^3-m^2x+p^2\), where m is a positive integer and p is a prime. We prove that for any prime p, the torsion subgroup of \(E_{m,p}(\mathbb {Q})\) is trivial for both the cases {\(m\ge 1\), \(m\not \equiv 0\pmod 3\)} and {\(m\ge 1\), \(m \equiv 0 \pmod 3\), with \(gcd(m,p)=1\)}. We also show that given any odd prime p and for any positive integer m with \(m\not \equiv 0\pmod 3\) and \(m\equiv 2\pmod {32}\), the lower bound for the rank of \(E_{m,p}(\mathbb {Q})\) is 2. Finally, we find curves of rank 9 in this family.  相似文献   

5.
In this paper, we study \(\lambda \)-constacyclic codes over the ring \(R=\mathbb {Z}_4+u\mathbb {Z}_4\) where \(u^{2}=1\), for \(\lambda =3+2u\) and \(2+3u\). Two new Gray maps from R to \(\mathbb {Z}_4^{3}\) are defined with the goal of obtaining new linear codes over \(\mathbb {Z}_4\). The Gray images of \(\lambda \)-constacyclic codes over R are determined. We then conducted a computer search and obtained many \(\lambda \)-constacyclic codes over R whose \(\mathbb {Z}_4\)-images have better parameters than currently best-known linear codes over \(\mathbb {Z}_4\).  相似文献   

6.
In this paper, we investigate the local and global stability and the period two solutions of all nonnegative solutions of the difference equation,
$$\begin{aligned} x_{n+1} = \frac{ ax_{n}+bx_{n-k}}{A+Bx_{n-k}} \end{aligned}$$
where abAB are all positive real numbers, \(k \ge 1\) is a positive integer, and the initial conditions \(x_{-k},x_{-k+1},...,x_{0}\) are nonnegative real numbers. It is shown that the zero equilibrium point is globally asymptotically stable under the condition \(a+b \le A\), and the unique positive solution is also globally asymptotically stable under the condition \(a-b \le A \le a+b\). By the end, we study the global stability of such an equation through numerically solved examples.
  相似文献   

7.
In this paper, we mainly study the theory of linear codes over the ring \(R =\mathbb {Z}_4+u\mathbb {Z}_4+v\mathbb {Z}_4+uv\mathbb {Z}_4\). By using the Chinese Remainder Theorem, we prove that R is isomorphic to a direct sum of four rings. We define a Gray map \(\Phi \) from \(R^{n}\) to \(\mathbb {Z}_4^{4n}\), which is a distance preserving map. The Gray image of a cyclic code over R is a linear code over \(\mathbb {Z}_4\). We also discuss some properties of MDS codes over R. Furthermore, we study the MacWilliams identities of linear codes over R and give the generator polynomials of cyclic codes over R.  相似文献   

8.
Permutation polynomials over finite fields have been studied extensively recently due to their wide applications in cryptography, coding theory, communication theory, among others. Recently, several authors have studied permutation trinomials of the form \(x^rh\left( x^{q-1}\right) \) over \({\mathbb F}_{q^2}\), where \(q=2^k\), \(h(x)=1+x^s+x^t\) and \(r, k>0, s, t\) are integers. Their methods are essentially usage of a multiplicative version of AGW Criterion because they all transformed the problem of proving permutation polynomials over \({\mathbb F}_{q^2}\) into that of showing the corresponding fractional polynomials permute a smaller set \(\mu _{q+1}\), where \(\mu _{q+1}:=\{x\in \mathbb {F}_{q^2} : x^{q+1}=1\}\). Motivated by these results, we characterize the permutation polynomials of the form \(x^rh\left( x^{q-1}\right) \) over \({\mathbb F}_{q^2}\) such that \(h(x)\in {\mathbb F}_q[x]\) is arbitrary and q is also an arbitrary prime power. Using AGW Criterion twice, one is multiplicative and the other is additive, we reduce the problem of proving permutation polynomials over \({\mathbb F}_{q^2}\) into that of showing permutations over a small subset S of a proper subfield \({\mathbb F}_{q}\), which is significantly different from previously known methods. In particular, we demonstrate our method by constructing many new explicit classes of permutation polynomials of the form \(x^rh\left( x^{q-1}\right) \) over \({\mathbb F}_{q^2}\). Moreover, we can explain most of the known permutation trinomials, which are in Ding et al. (SIAM J Discret Math 29:79–92, 2015), Gupta and Sharma (Finite Fields Appl 41:89–96, 2016), Li and Helleseth (Cryptogr Commun 9:693–705, 2017), Li et al. (New permutation trinomials constructed from fractional polynomials, arXiv: 1605.06216v1, 2016), Li et al. (Finite Fields Appl 43:69–85, 2017) and Zha et al. (Finite Fields Appl 45:43–52, 2017) over finite field with even characteristic.  相似文献   

9.
Let \(P\ge 3\) be an integer and let \((U_{n})\) and \((V_{n})\) denote generalized Fibonacci and Lucas sequences defined by \(U_{0}=0,U_{1}=1\); \( V_{0}=2,V_{1}=P,\) and \(U_{n+1}=PU_{n}-U_{n-1}\), \(V_{n+1}=PV_{n}-V_{n-1}\) for \(n\ge 1.\) In this study, when P is odd, we solve the equation \( U_{n}=wx^{2}+1\) for \(w=1,2,3,5,6,7,10.\) After then, we solve some Diophantine equations utilizing solutions of these equations.  相似文献   

10.
Let \(\mathbb {F}_{p^m}\) be a finite field of cardinality \(p^m\), where p is a prime, and kN be any positive integers. We denote \(R_k=F_{p^m}[u]/\langle u^k\rangle =F_{p^m}+uF_{p^m}+\cdots +u^{k-1}F_{p^m}\) (\(u^k=0\)) and \(\lambda =a_0+a_1u+\cdots +a_{k-1}u^{k-1}\) where \(a_0, a_1,\ldots , a_{k-1}\in F_{p^m}\) satisfying \(a_0\ne 0\) and \(a_1=1\). Let r be a positive integer satisfying \(p^{r-1}+1\le k\le p^r\). First we define a Gray map from \(R_k\) to \(F_{p^m}^{p^r}\), then prove that the Gray image of any linear \(\lambda \)-constacyclic code over \(R_k\) of length N is a distance preserving linear \(a_0^{p^r}\)-constacyclic code over \(F_{p^m}\) of length \(p^rN\). Furthermore, the generator polynomials for each linear \(\lambda \)-constacyclic code over \(R_k\) of length N and its Gray image are given respectively. Finally, some optimal constacyclic codes over \(F_{3}\) and \(F_{5}\) are constructed.  相似文献   

11.
In this paper we study the difference between the 2-adic valuations of the cardinalities \( \# E( \mathbb {F}_{q^k} ) \) and \( \# E( \mathbb {F}_q ) \) of an elliptic curve E over \( \mathbb {F}_q \). We also deduce information about the structure of the 2-Sylow subgroup \( E[ 2^\infty ]( \mathbb {F}_{q^k} ) \) from the exponents of \( E[ 2^\infty ]( \mathbb {F}_q ) \).  相似文献   

12.
Let \(\displaystyle \{p_n\}_{n=0}^{\infty }\), where \(p_n\) is a polynomial of degree n, be a sequence of polynomials orthogonal with respect to a positive probability measure. If \(x_{1,n} < \cdots < x_{n,n}\) denotes the zeros of \(p_n\) while \(x_{1,n-1} < \cdots < x_{n-1,n-1}\) are the zeros of \(p_{n-1}\), the inequality
$$\begin{aligned} x_{1,n} < x_{1,n-1} < x_{2,n} < \cdots < x_{n-1,n}< x_{n-1,n-1}< x_{n,n}, \end{aligned}$$
known as the interlacing property, is satisfied. We use a consequence of a generalised version of Markov’s monotonicity results to investigate interlacing properties of zeros of contiguous basic hypergeometric polynomials associated with little q-Jacobi polynomials and determine inequalities for extreme zeros of the above two polynomials. It is observed that the new bounds which are obtained in this paper give more precise upper bounds for the smallest zero of little q-Jacobi polynomials, improving previously known results by Driver and Jordaan (Math Model Nat Phenom 8(1):48–59, 2013), and in some cases, those by Gupta and Muldoon (J Inequal Pure Appl Math 8(1):7, 2007). Numerical examples are given in order to illustrate the accuracy of our bounds.
  相似文献   

13.
In this paper we are concerned with the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) (\(t\ge 0\)) of normalized biholomorphic mappings on the Euclidean unit ball \(\mathbb {B}^n\) in \({\mathbb {C}}^n\) that can be embedded in normal Loewner chains whose normalizations are given by time-dependent operators \(A\in \widetilde{\mathcal {A}}\), where \(\widetilde{\mathcal {A}}\) is a family of measurable mappings from \([0,\infty )\) into \(L({\mathbb {C}}^n)\) which satisfy certain natural assumptions. In particular, we consider extreme points and support points associated with the compact family \(\widetilde{S}^t_A(\mathbb {B}^n)\), where \(A\in \widetilde{\mathcal {A}}\). We prove that if \(f(z,t)=V(t)^{-1}z+\cdots \) is a normal Loewner chain such that \(V(s)f(\cdot ,s)\in \mathrm{ex}\,\widetilde{S}^s_A(\mathbb {B}^n)\) (resp. \(V(s)f(\cdot ,s)\in \mathrm{supp}\,\widetilde{S}^s_A(\mathbb {B}^n)\)), then \(V(t)f(\cdot ,t)\in \mathrm{ex}\, \widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\) (resp. \(V(t)f(\cdot ,t)\in \mathrm{supp}\,\widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\)), where V(t) is the unique solution on \([0,\infty )\) of the initial value problem: \(\frac{d V}{d t}(t)=-A(t)V(t)\), a.e. \(t\ge 0\), \(V(0)=I_n\). Also, we obtain an example of a bounded support point for the family \(\widetilde{S}_A^t(\mathbb {B}^2)\), where \(A\in \widetilde{\mathcal {A}}\) is a certain time-dependent operator. We also consider the notion of a reachable family with respect to time-dependent linear operators \(A\in \widetilde{\mathcal {A}}\), and obtain characterizations of extreme/support points associated with these families of bounded biholomorphic mappings on \(\mathbb {B}^n\). Useful examples and applications yield that the study of the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) for time-dependent operators \(A\in \widetilde{\mathcal {A}}\) is basically different from that in the case of constant time-dependent linear operators.  相似文献   

14.
In this paper we investigate linear codes with complementary dual (LCD) codes and formally self-dual codes over the ring \(R=\mathbb {F}_{q}+v\mathbb {F}_{q}+v^{2}\mathbb {F}_{q}\), where \(v^{3}=v\), for q odd. We give conditions on the existence of LCD codes and present construction of formally self-dual codes over R. Further, we give bounds on the minimum distance of LCD codes over \(\mathbb {F}_q\) and extend these to codes over R.  相似文献   

15.
We prove that the round sphere is the only compact Weingarten hypersurface embedded in the Euclidean space such that \(H_r = aH + b\), for constants \(a, b \in \mathbb {R}\). Here, \(H_r\) stands for the r-th mean curvature and H denotes the standard mean curvature of the hypersurface.  相似文献   

16.
17.
We study the structure of cyclic DNA codes of odd length over the finite commutative ring \(R=\mathbb {F}_2+u\mathbb {F}_2+v\mathbb {F}_2+uv\mathbb {F}_2 + v^2\mathbb {F}_2+uv^2\mathbb {F}_2,~u^2=0, v^3=v\), which plays an important role in genetics, bioengineering and DNA computing. A direct link between the elements of the ring R and 64 codons used in the amino acids of living organisms is established by introducing a Gray map from R to \(R_1=\mathbb {F}_2+u\mathbb {F}_2 ~(u^2=0)\). The reversible and the reversible-complement codes over R are investigated. We also discuss the binary image of the cyclic DNA codes over R. Among others, some examples of DNA codes obtained via Gray map are provided.  相似文献   

18.
Let \(q=\text {e}^{2\pi i\tau }, \mathfrak {I}\tau >0\), \(x=\text {e}^{2\pi i{z}}\), \({z}\in \mathbb {C}\), and \((x;q)_\infty =\prod _{n\ge 0}(1-xq^n)\). Let \((q,x)\mapsto ({q_1},{x_1})\) be the classical modular substitution given by the relations \({q_1}=\text {e}^{-2\pi i/\tau }\) and \({x_1}=\text {e}^{2\pi i{z}/{\tau }}\). The main goal of this paper is to give a modular-type representation for the infinite product \((x;q)_\infty \), this means, to compare the function defined by \((x;q)_\infty \) with that given by \(({x_1};{q_1})_\infty \). Inspired by the work (Stieltjes in Collected Papers, Springer, New York, 1993) of Stieltjes on semi-convergent series, we are led to a “closed” analytic formula for the ratio \((x;q)_\infty /({x_1};{q_1})_\infty \) by means of the dilogarithm combined with a Laplace type integral, which admits a divergent series as Taylor expansion at \(\log q=0\). Thus, the function \((x;q)_\infty \) is linked with its modular transform \(({x_1};{q_1})_\infty \) in such an explicit manner that one can directly find the modular formulae known for Dedekind’s Eta function, Jacobi Theta function, and also for certain Lambert series. Moreover, one can remark that our results allow Ramanujan’s formula (Berndt in Ramanujan’s notebooks, Springer, New York, 1994, Entry 6’, p. 268) (see also Ramanujan in Notebook 2, Tata Institute of Fundamental Research, Bombay, 1957, p. 284) to be completed as a convergent expression for the infinite product \((x;q)_\infty \).  相似文献   

19.
Given a Cantor-type subset \(\Omega \) of a smooth curve in \(\mathbb R^{d+1}\), we construct examples of sets that contain unit line segments with directions from \(\Omega \) and exhibit analytical features similar to those of classical Kakeya sets of arbitrarily small \((d+1)\)-dimensional Lebesgue measure. The construction is based on probabilistic methods relying on the tree structure of \(\Omega \), and extends to higher dimensions an analogous planar result of Bateman and Katz (Math Res Lett 15(1):73–81, 2008). In contrast to the planar situation, a significant aspect of our analysis is the classification of intersecting tube tuples relative to their location, and the deduction of intersection probabilities of such tubes generated by a random mechanism. The existence of these Kakeya-type sets implies that the directional maximal operator associated with the direction set \(\Omega \) is unbounded on \(L^p(\mathbb {R}^{d+1})\) for all \(1\le p<\infty \).  相似文献   

20.
In this article we study the problem
$$\begin{aligned} \Delta ^{2}u-\left( a+b\int _{\mathbb {R}^{N}}\left| \nabla u\right| ^{2}dx\right) \Delta u+V(x)u=\left| u\right| ^{p-2}u\ \text { in }\mathbb {R}^{N}, \end{aligned}$$
where \(\Delta ^{2}:=\Delta (\Delta )\) is the biharmonic operator, \(a,b>0\) are constants, \(N\le 7,\) \(p\in (4,2_{*})\) for \(2_{*}\) defined below, and \(V(x)\in C(\mathbb {R}^{N},\mathbb {R})\). Under appropriate assumptions on V(x), the existence of least energy sign-changing solution is obtained by combining the variational methods and the Nehari method.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号