首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop new, higher-order numerical one-step methods and apply them to several examples to investigate approximate discrete solutions of nonlinear differential equations. These new algorithms are derived from the Adomian decomposition method (ADM) and the Rach-Adomian-Meyers modified decomposition method (MDM) to present an alternative to such classic schemes as the explicit Runge-Kutta methods for engineering models, which require high accuracy with low computational costs for repetitive simulations in contrast to a one-size-fits-all philosophy. This new approach incorporates the notion of analytic continuation, which extends the region of convergence without resort to other techniques that are also used to accelerate the rate of convergence such as the diagonal Padé approximants or the iterated Shanks transforms. Hence global solutions instead of only local solutions are directly realized albeit in a discretized representation. We observe that one of the difficulties in applying explicit Runge-Kutta one-step methods is that there is no general procedure to generate higher-order numeric methods. It becomes a time-consuming, tedious endeavor to generate higher-order explicit Runge-Kutta formulas, because it is constrained by the traditional Picard formalism as used to represent nonlinear differential equations. The ADM and the MDM rely instead upon Adomian’s representation and the Adomian polynomials to permit a straightforward universal procedure to generate higher-order numeric methods at will such as a 12th-order or 24th-order one-step method, if need be. Another key advantage is that we can easily estimate the maximum step-size prior to computing data sets representing the discretized solution, because we can approximate the radius of convergence from the solution approximants unlike the Runge-Kutta approach with its intrinsic linearization between computed data points. We propose new variable step-size, variable order and variable step-size, variable order algorithms for automatic step-size control to increase the computational efficiency and reduce the computational costs even further for critical engineering models.  相似文献   

2.
This paper is concerned with stability analysis of biological networks modeled as discrete and finite dynamical systems. We show how to use algebraic methods based on quantifier elimination, real solution classification and discriminant varieties to detect steady states and to analyze their stability and bifurcations for discrete dynamical systems. For finite dynamical systems, methods based on Gr?bner bases and triangular sets are applied to detect steady states. The feasibility of our approach is demonstrated by the analysis of stability and bifurcations of several discrete biological models using implementations of algebraic methods.  相似文献   

3.
The purpose of this paper is to analyze an efficient method for the solution of the nonlinear system resulting from the discretization of the elliptic Monge-Ampère equation by a $C^0$ interior penalty method with Lagrange finite elements. We consider the two-grid method for nonlinear equations which consists in solving the discrete nonlinear system on a coarse mesh and using that solution as initial guess for one iteration of Newton's method on a finer mesh. Thus both steps are inexpensive. We give quasi-optimal $W^{1,\infty}$ error estimates for the discretization and estimate the difference between the interior penalty solution and the two-grid numerical solution. Numerical experiments confirm the computational efficiency of the approach compared to Newton's method on the fine mesh.  相似文献   

4.
We consider the combination of a network design and graph partitioning model in a multilevel framework for determining the optimal network expansion and the optimal zonal configuration of zonal pricing electricity markets, which is an extension of the model discussed in Grimm et al. (2019) that does not include a network design problem. The two classical discrete optimization problems of network design and graph partitioning together with nonlinearities due to economic modeling yield extremely challenging mixed-integer nonlinear multilevel models for which we develop two problem-tailored solution techniques. The first approach relies on an equivalent bilevel formulation and a standard KKT transformation thereof including novel primal-dual bound tightening techniques, whereas the second is a tailored generalized Benders decomposition. For the latter, we strengthen the Benders cuts of Grimm et al. (2019) by using the structure of the newly introduced network design subproblem. We prove for both methods that they yield global optimal solutions. Afterward, we compare the approaches in a numerical study and show that the tailored Benders approach clearly outperforms the standard KKT transformation. Finally, we present a case study that illustrates the economic effects that are captured in our model.  相似文献   

5.
We consider the problem of nonparametric estimation of unknown smooth functions in the presence of restrictions on the shape of the estimator and on its support using polynomial splines. We provide a general computational framework that treats these estimation problems in a unified manner, without the limitations of the existing methods. Applications of our approach include computing optimal spline estimators for regression, density estimation, and arrival rate estimation problems in the presence of various shape constraints. Our approach can also handle multiple simultaneous shape constraints. The approach is based on a characterization of nonnegative polynomials that leads to semidefinite programming (SDP) and second-order cone programming (SOCP) formulations of the problems. These formulations extend and generalize a number of previous approaches in the literature, including those with piecewise linear and B-spline estimators. We also consider a simpler approach in which nonnegative splines are approximated by splines whose pieces are polynomials with nonnegative coefficients in a nonnegative basis. A condition is presented to test whether a given nonnegative basis gives rise to a spline cone that is dense in the space of nonnegative continuous functions. The optimization models formulated in the article are solvable with minimal running time using off-the-shelf software. We provide numerical illustrations for density estimation and regression problems. These examples show that the proposed approach requires minimal computational time, and that the estimators obtained using our approach often match and frequently outperform kernel methods and spline smoothing without shape constraints. Supplementary materials for this article are provided online.  相似文献   

6.
In this paper we study the computational cost of solving theconvection-diffusion equation using various discretization strategiesand iteration solution algorithms. The choice of discretizationinfluences the properties of the discrete solution and alsothe choice of solution algorithm. The discretizations consideredhere are stabilized low-order finite element schemes using streamlinediffusion, crosswind diffusion and shock-capturing. The latter,shock-capturing discretizations lead to nonlinear algebraicsystems and require nonlinear algorithms. We compare variouspreconditioned Krylov subspace methods including Newton-Krylovmethods for nonlinear problems, as well as several preconditionersbased on relaxation and incomplete factorization. We find thatalthough enhanced stabilization based on shock-capturing requiresfewer degrees of freedom than linear stabilizations to achievecomparable accuracy, the nonlinear algebraic systems are morecostly to solve than those derived from a judicious combinationof streamline diffusion and crosswind diffusion. Solution algorithmsbased on GMRES with incomplete block-matrix factorization preconditioningare robust and efficient.  相似文献   

7.
We present an adaptive wavelet method for the numerical solution of elliptic operator equations with nonlinear terms. This method is developed based on tree approximations for the solution of the equations and adaptive fast reconstruction of nonlinear functionals of wavelet expansions. We introduce a constructive greedy scheme for the construction of such tree approximations. Adaptive strategies of both continuous and discrete versions are proposed. We prove that these adaptive methods generate approximate solutions with optimal order in both of convergence and computational complexity when the solutions have certain degree of Besov regularity.  相似文献   

8.
Summary This paper presents an existence-comparison theorem and an iterative method for a nonlinear finite difference system which corresponds to a class of semilinear parabolic and elliptic boundary-value problems. The basic idea of the iterative method for the computation of numerical solutions is the monotone approach which involves the notion of upper and lower solutions and the construction of monotone sequences from a suitable linear discrete system. Using upper and lower solutions as two distinct initial iterations, two monotone sequences from a suitable linear system are constructed. It is shown that these two sequences converge monotonically from above and below, respectively, to a unique solution of the nonlinear discrete equations. This formulation leads to a well-posed problem for the nonlinear discrete system. Applications are given to several models arising from physical, chemical and biological systems. Numerical results are given to some of these models including a discussion on the rate of convergence of the monotone sequences.  相似文献   

9.
Purpose In this article, a novel computational method is introduced for solving the fractional nonlinear oscillator differential equations on the semi‐infinite domain. The purpose of the proposed method is to get better and more accurate results. Design/methodology/approach The proposed method is the combination of the sine‐cosine wavelets and Picard technique. The operational matrices of fractional‐order integration for sine‐cosine wavelets are derived and constructed. Picard technique is used to convert the fractional nonlinear oscillator equations into a sequence of discrete fractional linear differential equations. Operational matrices of sine‐cosine wavelets are utilized to transformed the obtained sequence of discrete equations into the systems of algebraic equations and the solutions of algebraic systems lead to the solution of fractional nonlinear oscillator equations. Findings The convergence and supporting analysis of the method are investigated. The operational matrices contains many zero entries, which lead to the high efficiency of the method, and reasonable accuracy is achieved even with less number of collocation points. Our results are in good agreement with exact solutions and more accurate as compared with homotopy perturbation method, variational iteration method, and Adomian decomposition method. Originality/value Many engineers can utilize the presented method for solving their nonlinear fractional models.  相似文献   

10.
The present article is concerned with the Neumann control of systems modeled by scalar or vector parabolic equations of reaction-advection-diffusion type with a particular emphasis on systems which are unstable if uncontrolled. To solve these problems, we use a combination of finite-difference methods for the time discretization, finite-element methods for the space discretization, and conjugate gradient algorithms for the iterative solution of the discrete control problems. We apply then the above methodology to the solution of test problems in two dimensions, including problems related to nonlinear models.  相似文献   

11.
Parallel asynchronous subdomain algorithms with flexible communication for the numerical solution of nonlinear diffusion problems are presented. The discrete maximum principle is considered and the Schwarz alternating method and multisplitting methods are studied. A connection is made with M-functions for a classical nonlinear diffusion problem. Finally, computational experiments carried out on a shared memory multiprocessor are presented and analyzed.  相似文献   

12.
Attahiru Sule Alfa 《TOP》2002,10(2):147-185
This is an expository paper dealing with discrete time analysis of queues using matrix-analytic methods (MAM). Discrete time analysis queues has always been popular with engineers who are very keen on obtaining numerical values out of their analyses for the sake of experimentation and design. As telecommunication systems are based more on digital technology these days than analog the need to use discrete time analysis for queues has become more important. Besides, we find that several queues which are difficult to analyse by the continuous time approach are sometimes easier to analyse using discrete time method. Of course, there are some queueing problems which are easier to analyse using continuous time approach instead of discrete time. We discuss, in this paper, both the advantages and disadvantages of discrete time analysis. The paper focusses on setting up several queueing systems as discrete time quasi-birth-and-death processes and then shows how to use matrix-geometric method (MGM), a class of MAM, to analyse the problems. We point out that there are other methods for analysing such queues but MGM provides a much simpler approach for setting up the problems in order to obtain semi-explicit results for computational tractability. We also point out some of the shortcomings of MGM. The paper mainly focusses on the Geo/Geo/1, PH/PH/1, GI/G/1 and GI/G/1/K systems and some of the related problems, including vacation models with time-limited visits.  相似文献   

13.
We study the transient optimization of gas transport networks including both discrete controls due to switching of controllable elements and nonlinear fluid dynamics described by the system of isothermal Euler equations, which are partial differential equations in time and 1-dimensional space. This combination leads to mixed-integer optimization problems subject to nonlinear hyperbolic partial differential equations on a graph. We propose an instantaneous control approach in which suitable Euler discretizations yield systems of ordinary differential equations on a graph. This networked system of ordinary differential equations is shown to be well-posed and affine-linear solutions of these systems are derived analytically. As a consequence, finite-dimensional mixed-integer linear optimization problems are obtained for every time step that can be solved to global optimality using general-purpose solvers. We illustrate our approach in practice by presenting numerical results on a realistic gas transport network.  相似文献   

14.
For nonlinear reduced‐order models (ROMs), especially for those with high‐order polynomial nonlinearities or nonpolynomial nonlinearities, the computational complexity still depends on the dimension of the original dynamical system. To overcome this issue, we develop an efficient finite element (FE) discretization algorithm for nonlinear ROMs. The proposed approach approximates the nonlinear function by its FE interpolant, which makes the inner product evaluations in generating the nonlinear terms computationally cheaper than that in the standard FE discretization. Due to the separation of spatial and temporal variables in the FE interpolation, the discrete empirical interpolation method (DEIM) can be directly applied on the nonlinear functions in the same manner as that in the finite difference setting. Therefore, the main computational hurdles for applying the DEIM in the FE context are conquered. We also establish a rigorous asymptotic error estimation, which shows that the proposed approach achieves the same accuracy as that of the standard FE method under certain smoothness assumptions of the nonlinear functions. Several numerical tests are presented to validate the proposed method and verify the theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1713–1741, 2015  相似文献   

15.
We consider a reaction–diffusion parabolic problem on branched structures. The Hodgkin–Huxley reaction–diffusion equations are formulated on each edge of the graph. The problems are coupled by some conjugation conditions at branch points. It is important to note that two different types of the flux conservation equations are considered. The first one describes a conservation of the axial currents at branch points, and the second equation defines the conservation of the current flowing at the soma in neuron models. We study three different types of finite-difference schemes. The fully implicit scheme is based on the backward Euler algorithm. The stability and convergence of the discrete solution is proved in the maximum norm, and the analysis is done by using the maximum principle method. In order to decouple computations at each edge of the graph, we consider two modified schemes. In the predictor algorithm, the values of the solution at branch points are computed by using an explicit approximation of the conservation equations. The stability analysis is done using the maximum principle method. In the predictor–corrector method, in addition to the previous algorithm, the values of the solution at the branch points are recomputed by an implicit algorithm, when the discrete solution is obtained on each subdomain. The stability of this algorithm is investigated numerically. The results of computational experiments are presented.  相似文献   

16.
In this paper we present a new algorithm for the solution of nonlinear complementarity problems. The algorithm is based on a semismooth equation reformulation of the complementarity problem. We exploit the recent extension of Newton's method to semismooth systems of equations and the fact that the natural merit function associated to the equation reformulation is continuously differentiable to develop an algorithm whose global and quadratic convergence properties can be established under very mild assumptions. Other interesting features of the new algorithm are an extreme simplicity along with a low computational burden per iteration. We include numerical tests which show the viability of the approach.  相似文献   

17.
While graphical models for continuous data (Gaussian graphical models) and discrete data (Ising models) have been extensively studied, there is little work on graphical models for datasets with both continuous and discrete variables (mixed data), which are common in many scientific applications. We propose a novel graphical model for mixed data, which is simple enough to be suitable for high-dimensional data, yet flexible enough to represent all possible graph structures. We develop a computationally efficient regression-based algorithm for fitting the model by focusing on the conditional log-likelihood of each variable given the rest. The parameters have a natural group structure, and sparsity in the fitted graph is attained by incorporating a group lasso penalty, approximated by a weighted lasso penalty for computational efficiency. We demonstrate the effectiveness of our method through an extensive simulation study and apply it to a music annotation dataset (CAL500), obtaining a sparse and interpretable graphical model relating the continuous features of the audio signal to binary variables such as genre, emotions, and usage associated with particular songs. While we focus on binary discrete variables for the main presentation, we also show that the proposed methodology can be easily extended to general discrete variables.  相似文献   

18.
Recently, a new approach has been proposed to efficiently compute the accurate values of partial derivatives of a function or functions, and simultaneously to estimate the rounding errors in the computed function values. In this paper the use of the method in the solution of nonlinear equations is investigated.The method makes use of the computational graph and, when applied to the evaluation of a function, traverses it from the top ( = the function node) down to the bottom ( = the input variable nodes). A remarkable analogy is observed between the partial derivatives and the shortest paths on the computational graph. The top-down traversing on the computational graph has the following advantages over the existing algorithms using the bottom-up traversing: (1) The gradient of a function can be computed within the same complexity as that of the evaluation of the function alone (the complexity being independent of the number of input variables); (2) A fairly sharp estimate of the rounding error in the function evaluation is obtained, on the basis of which a computationally meaningful norm may be introduced in the space of residuals to afford a convergence criterion for an iterative method of solving the system of nonlinear equations. As an example, a system of nonlinear equations with 108 variables for a distillation tower of a chemical plant is numerically analyzed in detail. It is shown that by the use of the proposed method we could satisfactorily resolve two main problems encountered in computing a numerical solution of the system of nonlinear equations, i.e., how to compute the accurate Jacobian matrix and when we should stop the iteration.  相似文献   

19.
This paper presents a set of new convex quadratic relaxations for nonlinear and mixed-integer nonlinear programs arising in power systems. The considered models are motivated by hybrid discrete/continuous applications where existing approximations do not provide optimality guarantees. The new relaxations offer computational efficiency along with minimal optimality gaps, providing an interesting alternative to state-of-the-art semidefinite programming relaxations. Three case studies in optimal power flow, optimal transmission switching and capacitor placement demonstrate the benefits of the new relaxations.  相似文献   

20.
We investigate the dynamics and methods of computation for some nonlinear finite difference systems that are the discretized equations of a time-dependent and a steady-state reaction–diffusion problem. The formulation of the discrete equations for the time-dependent problem is based on the implicit method for parabolic equations, and the computational algorithm is based on the method of monotone iterations using upper and lower solutions as the initial iterations. The monotone iterative method yields improved upper and lower bounds of the solution in each iteration, and the sequence of iterations converges monotonically to a solution for both the time-dependent and the steady-state problems. An important consequence of this method is that it leads to a bifurcation point that determines the dynamic behavior of the time-dependent problem in relation to the corresponding steady-state problem. This bifurcation point also determines whether the steady-state problem has one or two non-negative solutions, and is explicitly given in terms of the physical parameters of the system and the type of boundary conditions. Numerical results are presented for both the time-dependent and the steady-state problems under various boundary conditions, including a test problem with known analytical solution. These numerical results exhibit the predicted dynamic behavior of the time-dependent solution given by the theoretical analysis. Also discussed are the numerical stability of the computational algorithm and the convergence of the finite difference solution to the corresponding continuous solution of the reaction–diffusion problem. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号