首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The synthesized phosphorylcholine copolymer composed of 2-methacryloyloxyethylphosphorylcholine (MPC) and n-butyl methacrylate (BMA), blended with polyethersulfone (PES), was used to fabricate antifouling ultrafiltration membranes. Water contact angle measurements confirmed that the hydrophilicity of the MPC-modified PES membranes was enhanced to certain extent. X-ray photoelectron spectroscopy (XPS) analysis verified the substantial enrichment of MPC at the surface of the MPC-modified PES membranes. The adsorption experiments indicated that the adsorption amounts of bovine serum albumin (BSA) on the MPC-modified PES membranes were dramatically decreased in comparison with the control PES membrane. Ultrafiltration experiments were carried out to investigate the effect of MPC modification on the antifouling and permeation properties of the PES membranes, it was found that the rejection ratio of BSA was decreased, the flux recovery ratio was remarkably increased, and the degree of irreversible fouling decreased from 0.46 to 0.09. In addition, the MPC-modified PES membranes could run several cycles without substantial flux loss.  相似文献   

2.
A new random copolymer was synthesized by reacting hydrophilic N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) (DMMSA) with hydrophobic butyl methacrylate (BMA) through a conventional radical polymerization. The as-prepared sulfobetaine copolymer (DMMSA–BMA) was blended with polyethersulfone (PES) to fabricate antifouling ultrafiltration membrane for BSA separation. The X-ray photoelectron spectroscopy analysis of blend membranes revealed concentration of sulfobetaine groups at the membrane surfaces that endowed the membrane with higher hydrophilicity and better antifouling property. For the membrane with 8.0 wt% DMMSA–BMA copolymer concentration (No. 5), irreversible fouling has been considerably reduced and the flux recovery rate of the blend membrane reached as high as 82.8%. Furthermore, the blend membrane could effectively resist BSA fouling in a wide pH range from 4.0 to 8.0.  相似文献   

3.
Low-temperature CO2 plasma is used for the treatment of poly-ethersulfone (PES), polyamide (PA) and poly-phenylene ethersulfone (PPE) ultrafiltration membranes. This has led to significant enhancement of the wetting characteristics of the membrane surface as is shown by contact angle measurements and Fourier transform infrared (FTIR) spectrum analysis of the treated membranes. Changes in the physical characteristics of the surface, such as tensile property, surface roughness, etc. are quantified by tensile strength measurement and atomic force microscopy (AFM), respectively. An increase in the measured values of the di-electric constants further highlights the hydrophilic modification of the surface. A series of ultrafiltration experiments using a BSA solution of known concentration under different operating conditions is performed and the deposition thicknesses over the membrane surface during ultrafiltration are measured directly using image analyzing microscopy. The results clearly demonstrate that a plasma treated PES membrane is more hydrophilic with smoother surface and resists fouling leading to significant enhancement of permeate flux.  相似文献   

4.
Polyethersulfone (PES) membranes are prevalent in the field of water treatment owing to their exceptional separation efficiency, robust mechanical properties, and resistance to chemical degradation. Nevertheless, these membranes are prone to fouling, resulting in a decrease in both flux and ultrafiltration efficiency. In the present study, PES membranes are blended with poly (3-Sulfopropyl Methacrylate) (PSPMA) in various weight percentages (0%–3%) to improve their antifouling and ultrafiltration properties. The physicochemical properties of the blended membranes, including surface morphology, contact angle, hydrophilicity and surface energy are evaluated. The findings indicate that incorporation PSPMA results in an enhancement of the hydrophilic properties and surface charge of the PES membranes, assessed by employing Bovine Serum Albumin (BSA) as a representative protein. Modified blended membranes display greater Flux Recovery Ratio (FRR%) and exhibit superior fouling resistance. Under the same experimental conditions (0.2 MPa applied pressure), a pure water flux of 154.18 L·m−2·h−1 for PES/PSPMA membrane found substantially greater than pure PES membrane (103.52 L·m−2·h−1) along with Total Fouling Ratio (TFR) of 36% and 64.9% respectively. Exceptional antimicrobial efficacy for modified membranes is revealed against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) using disc diffusion technique rendering them well-suited for water treatment applications.  相似文献   

5.
The flux behavior of 0.2 μm nylon, polysulfone (PS), polyvinylidene fluoride (PVDF) and polyethersulfone (PES) membranes was examined during dead-end microfiltration of commercial apple juice. On nylon membranes, a 0.1 μm thick surface fouling layer rapidly formed that acted as a secondary membrane. The colloidal particles retained by this surface layer aggregated to form a thick loose gel structure, producing an anisotropic fouling structure. In contrast, the 4 μm thick surface fouling layer of PES was slower to form and had a more open structure with a lower flux resistance per unit thickness. The morphology of the PES surface layer also did not differ dramatically from the loose gel structure that subsequently formed on top of this secondary membrane. The PS surface fouling layer was similar in structure to nylon whereas the PVDF layer more closely resembled that found with PES. The density of the surface fouling layer did not directly correlate to membrane surface hydrophobicity or pure water flux. Atomic force microscopy (AFM) indicated that surface roughness strongly influenced surface fouling layer morphology. The membrane surface appears to act as a template for the fouling process; therefore, smooth membranes (nylon and PS) produce a dense surface fouling layer whereas this same layer on rough membranes (PES and PVDF) is much more open. Consequently, the fluxes of PES and PVDF membranes are less affected by fouling formation.  相似文献   

6.
Dendrimers have received more attention in all fields of research these days. In the present study, polyamidoamine (PAMAM) dendrimers were synthesized on the acrylic ultrafiltration membranes to minimize fouling as an important deficiency in the separation process. The antifouling activity of these dendrimers with different generations (G0‐3) was tested to restrict three macrolides (tylvalosin, tylosin, and tulathromycin) and two pleuromutilins (tiamulin and valnemulin) as veterinary antibiotic drugs with amine groups and positive charges at pH = 7 of the membrane surface. These compounds are risky for human consumption. Due to having several amine functional groups and branches, PAMAM dendrimers can be a great coating agent for antifouling. G3 PAMAM dendrimer‐coated membranes had the best performance (water flux: 130.7 L/m2·h, rejection of tulathromycin: 91.4%, flux recovery ratio: 86.3%). The function of this ultrafiltration process depended on pore size and also charge surface. A significant reduction for irreversible and reversible fouling was observed for this new ultrafiltration membrane (Fir: 14.5%, Fre: 21.9%). This observation was confirmed by the power law model. Three 5‐hour cycle ultrafiltration processes were carried out for veterinary antibiotic wastewater that showed 3.18% loss of initial water flux (for the third cycle), final cleaning efficiency of 96.82%, and tylvalosin rejection of 94.1%.  相似文献   

7.
以二苯甲酮(BP)为紫外引发剂,将聚乙二醇甲基丙烯酸甲酯(PEGMA)接枝在聚砜超滤膜表面以提高膜的抗污染性能.在二苯甲酮存在的条件下,波长较长(λ300nm)的紫外光(UV)辐射下发生提氢反应,可以有效防止聚砜分子主链的剪切,保持改性膜的分离性能.考察了PEGMA浓度、UV辐射时间和BP浓度对改性超滤膜接枝度、亲水性和抗污染性能的影响.用表面全反射红外光谱(ATR/FTIR)表征改性前后膜表面化学组成的变化.表面改性膜的纯水通量略有降低而牛血清白蛋白(BSA)截留率有所提高.随着接枝度的提高,PEGMA接枝改性膜的抗污染性能增加.  相似文献   

8.
The flat sheet polyethersulfone (PES) and poly(vinylidene fluoride) (PVDF) membranes were prepared by immersion precipitation technique. The influence of hot air and water treatment on morphology and performance of membranes were investigated. The membranes were characterized by AFM, SEM, cross-flow filtration of milk and fouling analysis. The PES membrane turns to a denser structure with thick skin layer by air treatment at various temperatures during different times. This diminishes the pure water flux (PWF). However the milk permeation flux (MPF) was considerably improved at 100 °C air treatment for 20 min with no change in protein rejection. The smooth surface and slight decrease in surface pore size for air treated PES membrane at 100 °C compared to untreated membrane may cause this behavior for the membrane. The water treatment of PES membranes at 55 and 75 °C declines the PWF and MPF and increases the protein rejection. This is due to slight decrease in membrane surface pore size. The treatment of PES membrane with water at higher temperature results in a porous structure with superior performance. The fouling analysis of 20 min treated membrane indicates that the surface properties of 100 °C air treated and 95 °C water treated PES membranes are improved compared to untreated membrane. The SEM observation depicts that the morphology of air and water treated PVDF membranes was denser and smoother with increasing the heat treatment temperature. The 20 min air treated PVDF membranes at 100 °C and water treated at 95 °C exhibited the highest performance and antifouling properties.  相似文献   

9.
Titanium dioxide (TiO2) nanoparticles were assembled on the surface of nanofiltration blend membrane. For settling TiO2 on the membrane surface, two membrane categories were used: (i) unmodified polyethersulfone (PES)/polyimide (PI) blend membrane, and (ii) –OH functionalized PES/PI blend membrane with different concentrations of diethanolamine (DEA). These membranes were radiated by UV light after TiO2 depositing with different concentrations. 15 min immersion in colloidal suspension and 15 min UV irradiation with 160 W lamps were used for modification. The modification resulted in the formation of a photo-catalytic property with enhanced membrane hydrophilicity. The self-assembly of TiO2 nanoparticles was established through coordinance bonds with –OH functional groups on the membrane surface. A comparison between the UV irradiated TiO2 deposited blend membrane and deposited-functionalized blend membranes showed that –OH groups originate excellent adhesion of TiO2 nanoparticles on the membrane surface, increase reversible deposition, and diminish irreversible fouling. The membranes were characterized using SEM, FTIR, EDX, contact angle, cross flow filtration, and antifouling measurements. SEM images show that the presence of –OH groups on the DEA-modified membrane surface is the main parameter for extra uniformly settlement of TiO2 nanoparticles on the membrane surface. This procedure is a superior technique for modification of PES/PI nanofiltration membranes to enhance water flux and minimization membrane fouling.  相似文献   

10.
《先进技术聚合物》2018,29(2):795-805
In this research, composite membranes were prepared by cross‐linking of poly(vinyl alcohol) (PVA) and glutaraldehyde (GA) on amidoximated ultrafiltration membrane. During this procedure, it was taken advantage of large‐area graphene oxide sheets as graphitic nets in the active layer. These membranes were used to remove an industrial textile dye (Chrysophenine GX) from wastewater. Optimum condition for membrane preparation was 1.5% wt. of PVA, 1.5% wt. of GA, and 0.3% wt. of graphene oxide sheets. Permeation results showed that electrostatic charges on membrane surface have easily converted from positive into negative ones. Contact angle was significantly decreased (63.5° to 28.8°). Final nanofiltration membrane showed lowest fouling rate during removing the industrial direct dye (flux recovery ratio: 96.60%, reversible fouling ratio: 23.82%, and irreversible fouling ratio: 3.39%). Pore size of this membrane was <8 nm, and Chrysophenine GX was eliminated by 98.5% with water permeability of 12.23 L/m2.h.bar.  相似文献   

11.
Hydrophilic modification of ultrafiltration membranes was achieved through blending of Pluronic F127 with poly(ether sulfone) (PES). The chemical composition and morphology changes of the membrane surface were confirmed by water contact angle, X-ray photoelectron spectroscopy, scanning electron microscopy, and protein adsorption measurements. The decreased static water contact angle with an increase in the Pluronic F127 content indicated an increase of surface hydrophilicity. XPS analysis revealed enrichment of PEO segments of Pluronic F127 at the membrane surface. The apparent protein adsorption amount decreased significantly from 56.2 to 0 microg/cm(2) when the Pluronic F127 content varied from 0% to 10.5%, which indicated that the blend membrane had an excellent ability to resist protein adsorption. The ultrafiltration experiments revealed that the Pluronic F127 content had little influence on the protein rejection ratio and pure water flux. Most importantly, at a high Pluronic F127 content membrane fouling, especially irreversible fouling, has been remarkably reduced. The flux recoveries of blend membranes reached as high as 90% after periodic cleaning in three cycles.  相似文献   

12.
New fouling resistance and stimulus–responsive nanofiltration membranes were fabricated by adding photochromic spiropyran (SPO) and spironaphthoxazine (SNO) nanofillers to the polyethersulfone (PES) matrix via the phase inversion method. The effect of SPO and SNO, as novel photoresponsive molecule nanofillers, were evaluated in terms of membrane morphology, porosity, wettability, pure water flux (PWF), antifouling resistance, and stimulus–responsive properties. All the modified membranes indicated better performance compared to the bare PES. The membrane PWF was notably enhanced from 7.7 kg/m2h for the bare PES up to 18.68 and 20.58 kg/m2h for the 0.1 wt.% SPO and SNO blended membranes, respectively. Also, the 0.1 wt.% of SNO-based PES membrane indicated the best flux recovery ratio compared to the other membranes. The photo stimulus–responsive assessment showed a color change for both SPO and SNO photochromic in membranes. In the case of variable effect investigation, the response surface methodology at three levels (pressure: 4, 5, 6 bar and flow rate: 50, 100, and 150 L/h) was applied. A suitable flux (23.39 kg/m2 h) and high removal efficiency (more than 90%) was achieved at optimum conditions. Also, the modified membranes by photochromic materials were sensitive to environmental variables such as acidic and alkaline conditions by changing their color.  相似文献   

13.
Nanostructured polymer membranes are nowadays of crucial importance in achieving antifouling properties. Nanomaterials with tunable composition, size, and morphology, surface modification and functionality offer unprecedented opportunities for efficient wastewater treatment. In this work, the effect of holmium (III) molybdate (Ho2MoO6) nanomaterial as a new nanofiller on preparation of nanostructured polyethersulfone (PES) mixed matrix membranes was examined in terms of hydrophilicity, membrane morphology, permeability, dye and protein separation and antifouling property. The Ho2MoO6 nanosheets were synthesized and characterized by FTIR, XRD, and FESEM and used in different amounts in PES matrix. The pore size and the membrane porosity increased with Ho2MoO6 loading. The nanocomposite membranes showed enhancement in hydrophilicity, antifouling properties, dye rejection and permeability. The remarkably pure water flux (195 L/m2h at 3 bar) and 92.3% flux recovery after bovine serum albumin (BSA) filtration were obtained for the membrane mixed with 2 wt% Ho2MoO6 compared to 95 L/m2h and 75.2% obtained for the bare PES, respectively. Moreover, significantly high rejection of Acid Red 125 (95 ± 1%) was achieved. Thus, the experimental results established the potential efficiency of the novel nanocomposite membrane for the separation applications.  相似文献   

14.
聚醚砜/纤维素晶体共混膜材料及其超滤性能   总被引:1,自引:0,他引:1  
聚醚砜与纤维素晶体等共混成铸膜液,采用浸没沉淀相转化法制备聚醚砜/纤维素晶体共混膜材料.通过超滤装置检测复合膜的水通量、截留率、平均孔径、孔隙率、抗污染性等超滤性能,从而讨论了纤维素晶体含量对共混膜超滤性能的影响.采用抗张测试机、热重分析仪(TGA)、原子力显微镜(AFM)对共混膜的力学性能、热稳定性能、形貌结构进行表征.结果表明,随着纤维素晶体的含量的增加,共混膜的纯水通量先升高后有所降低,截留率均保持在91%~95%,抗张强度、断裂伸长率先增大后有所下降,抗污染性较纯聚醚砜膜显著提高.当纤维素晶体质量分数为1%时,纯水通量达到最大为813.3L·m-2·h-1,孔隙率为88.8%,平均孔径达为70.9nm,抗张强度为7.25MPa,断裂伸长率为11.6%,平均污染度FR值为22.0%,衰减系数m值为35.8%.共混膜具有由纤维素晶体、聚醚砜热降解分别引起的两个失重阶段.共混膜为典型非对称膜结构,表皮层较为致密,多孔支撑层孔径较大.  相似文献   

15.
Conventional polymer membranes suffer from low flux and serious fouling when used for treating emulsified oil/water mixtures. Reported herein is the fabrication of a novel superhydrophilic and underwater superoleophobic poly(acrylic acid)‐grafted PVDF filtration membrane using a salt‐induced phase‐inversion approach. A hierarchical micro/nanoscale structure is constructed on the membrane surface and endows it with a superhydrophilic/underwater superoleophobic property. The membrane separates both surfactant‐free and surfactant‐stabilized oil‐in‐water emulsions under either a small applied pressure (<0.3 bar) or gravity, with high separation efficiency and high flux, which is one to two orders of magnitude higher than those of commercial filtration membranes having a similar permeation property. The membrane exhibits an excellent antifouling property and is easily recycled for long‐term use. The outstanding performance of the membrane and the efficient, energy and cost‐effective preparation process highlight its potential for practical applications.  相似文献   

16.
Novel ultrafiltration membranes were prepared by simple blending of polyethersulfone (PES) and soybean phosphatidylcholine (SPC). X-ray photoelectron spectroscopy (XPS) and water contact angle measurements indicated SPC enrichment at the membrane surfaces. The immobilization and arrangement of PC groups at surfaces rendered the membranes more hydrophilic. BSA adsorption amount decreased from 56.2 μg/cm2 for SPC-free PES membrane to 2.4 μg/cm2 for PES/SPC blend membrane. The fouling-resistant property of the blend membranes was improved considerably with an increase of SPC content while the pure water permeation flux decreased remarkably. Using PEG/PVP mixture instead of PEG as pore-forming agent increased pure water flux of PES/SPC blend membrane to some extent.  相似文献   

17.
The algae bloom phenomenon incurs a major challenge to conventional drinking water treatment processes due to the discharges of a large amount of intracellular pollutant and odor compounds in the water sources. Membrane processes have been considered as promising technologies to treatment of algal-rich water due to complete algal cell rejection however, its application has been limited by membrane fouling. In this work, the high-performance loose antifouling PES NF membranes were fabricated using diazonium-induced grafting and applied for treating real algal effluent. The modified membranes exhibited complete algal dye removal and turbidity removal throughout the long-term filtration. Also, the coupling and radically modified membranes can be able to removed COD by up to 90% and 88%, respectively, while a removal efficiency of 24% was observed for bare membrane. It is worth noting that, a relative smooth behavior in permeate flux by loose modified membranes during prolonged algal dye filtration, demonstrating exceptional anti-fouling property of membranes. In addition, the fouled modified membranes were effectively recovered by water flushing. Both loose modified membranes exhibited excellent resistance in the strongly acidic environment. These high performance antifouling NF membranes affords an innovative methodology toward the treatment of algal-rich water.  相似文献   

18.
Highly fouling-resistant ultrafiltration (UF) membranes were synthesized by heterogeneous photograft copolymerization of two water-soluble monomers, poly(ethylene glycol) methacrylate (PEGMA) and N,N-dimethyl-N-(2-methacryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPE), with and without cross-linker monomer N,N'-methylene bisacrylamide (MBAA), onto a polyethersulfone (PES) UF membrane. The characteristics, the stability, and the UF separation performance of the resulting composite membranes were evaluated in detail. The membranes were characterized with respect to membrane chemistry (by ATR-IR spectroscopy and elemental analysis), surface wettability (by contact angle), surface charge (by zeta potential), surface morphology (by scanning electron microscopy), and pure water permeability and rejection of macromolecular test substances (including the "cutoff" value). The surface chemistry and wettability of the composite membranes did not change after incubating in sodium hypochlorite solution (typically used for cleaning UF membranes) for a period of 8 days. Changes in water permeability after static contact with solutions of a model protein (myoglobin) were used as a measure of fouling resistance, and the results suggest that PEGMA- and SPE-based composite membranes at a sufficient degree of graft modification showed much higher adsorptive fouling resistance than unmodified PES membranes of similar or larger nominal cutoff. This was confirmed in UF experiments with myoglobin solutions. Similar results, namely, a very much improved fouling resistance due to the grafted thin polymer hydrogel layer, were also obtained in the UF evaluation using humic acid as another strong foulant. In some cases, the addition of the cross-linker during modification could improve both permeate flux and solute rejection during UF. Overall, composite membranes prepared with an "old generation" nonfouling material, PEGMA, showed better performance than composite membranes prepared with a "new generation" one, the zwitterionic SPE.  相似文献   

19.
侯淑华  郑吉富  董雪 《应用化学》2017,34(6):644-648
膜分离技术广泛应用于水处理、医药、食品、化工等领域。但在膜使用过程中,膜容易被蛋白质和细菌所污染,降低了膜的分离性能和使用寿命,提高了膜技术的应用成本,极大的限制了膜的应用。本文以含羧基的酚酞聚芳醚酮(PEK-COOH)制备超滤膜,利用1-乙基-(3-二甲基氨基丙基)碳酰二亚胺/N-羟基琥珀酰亚胺(EDC/NHS)方法将碱性氨基酸赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His)接枝至超滤膜表面。实验结果表明,接枝氨基酸后水通量增加,静态蛋白吸附量降低,同时接枝组氨酸的超滤膜过滤牛血清白蛋白(BSA)3个循环后水通量恢复率达80%,表现出良好的抗污染性能。  相似文献   

20.
To create a self‐cleaning feature and improve antifouling property, polysulfone (PSf) membranes were modified with WO3 and polyaniline (PANI) nanoparticles (0–2 wt%) via phase inversion method for ultrafiltration of landfill leachate. The mass ratio of WO3 nanoparticles was varied between 0, 40 and 60 wt% in different loadings. All synthesized membranes were tested with and without UV irradiation to evaluate the self‐cleaning feature. The synthesized PANI was analyzed with scanning electron morphology (SEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). The surface hydrophilicity of the modified membranes increases with increasing the nanoparticle loadings (0–2 wt%). The membrane morphology indicated higher porosity and more finger like pores for the modified membranes. The porosity of 86.8% was achieved for the membrane containing 2 wt% PANI. The flux recovery ratio (FR) of membranes without UV radiation was increased by increasing the ratio of PANI to WO3 nanoparticles, while the antifouling ability of membranes including WO3 nanoparticles improved and reached to 98.87% after UV radiation. The highest COD removal before (76.65 %) and after (78.42%) UV radiation was obtained for the membrane containing 2 wt% nanoparticle loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号