首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Experimental data are presented for cathode erosion rates on copper cathodes (or magnetically rotated arcs in steam, and mixtures of steam, hydrogen, and oxygen with argon. Measurements were also made of the arc voltage and velocity. The erosion rates for steam and oxygen plasmas were significantly lower than those .16r argon and hydrogen. Pure steam and 10% oxygen in argon gave erosion rates of 2.3 and 6.1 g/ C respectively while pure argon and 70% hydrogen in argon gave rates of 14.8 and 13.0 g/C respectively. Erosion rates decreased with increasing are velocities. The variation of arc velocity with operating conditions is described in terms of both aerodynamic and surface drag on the arc and arc root respectively.  相似文献   

2.
Experimental results are presented for electrode erosion on copper electrodes in magnetically rotated arcs in argon and helium. Measurements were also made of the arc voltage and velocity. The effects due to the contamination of the electrode surface by either a native contaminant layer (copper oxide and carbon traces) or the continuous injection of very small amounts of various diatomic gases (nitrogen, oxygen, chlorine, and carbon monoxide) into the inert plasma gases were determined. The erosion rates for pure argon were significantly higher than those for pure helium (13.5 g/C for argon and 1 g/C for helium) and with both gases, very high arc velocities were measured initially (>60 m/s for argon and >160 m/s for helium) when a natural contaminant layer was still present on the cathode. The removal of this layer resulted in lower velocities (2m/s for argon and 20m/s for helium) and higher erosion rates. The removal of the layer was much faster with argon, due possibly to higher electrode surface current densities for argon arcs.  相似文献   

3.
The present modeling of a free-burning argon arc accounts for copper vapor contamination from the anode. Simulations are made for an atmospheric arc that has a length of 10 mm and an electric current of 200 amps. Predicted results for two different anode evaporation rates are compared to those from a pure argon arc with no copper vapor contamination. Copper vapor concentration, temperature, electric potential, and current density profiles are presented. Included in this analysis are radiation losses from both the argon and copper by using recently calculated net emission coefficients. It was found that evaporation of copper from the anode results in a cooling of the arc in a region close to the anode, but has an insignificant influence on the arc close to the cathode. Due to the arc flow characteristics most of the copper vapor tends to be confined to the anode region.  相似文献   

4.
The effects of N2 and CO contaminants in atmospheric-pressure argon on an arc rotating between two concentric copper electrodes has been studied using optical spectroscopy of copper lines. The axial temperature of the magnetically driven arc in Ar + %N2 was determined to be around 10,000 K for arc currents of SO to 200 A. The diffusion process of the copper vapor from the cathode was also studied. A copper density maximum 1 mm from the cathode along the arc column was found in Ar + %N2. Removal of the contaminated cathode surface layers by the arc when contaminant injection in the plasma gas was stopped was found to be a slow process with a time scale depending on the type of the gas contaminant. The presence of gas contaminant in the electrode material controls the cathode erosion mechanism and the overall arc behavior in the transition between a contaminated to a pure argon arc.  相似文献   

5.
Cathode erosion rates are reported (or copper electrodes in a simulated plasma torch operating at atmospheric pressure. The are current was 100A (or most experiments; the magnetic field used to move the arc varied between 0.001 and 0.15 T. Different plasma gases were used (Ar, He, air, N2, CO, and mixtures of the noble gases with O2, N2, CO, CH4, Cl2, and H2S) at flow rates varying between 0.2 and 20 liters/min. Different criteria (arc velocity, arc attachment residence time, arc current density) were used to analyze the erosion results.  相似文献   

6.
Methane pyrolysis via thermal plasma was investigated experimentally on a 2 kW DC arc plasma setup in argon atmosphere. Two widely applied methane pyrolysis profiles, i.e., pre-mixing methane and argon before fed into plasma torch, and injecting methane into pure argon plasma jet at torch outlet, were compared. Performances of methane pyrolysis regarding to methane conversion, acetylene selectivity, acetylene specific energy requirement (SER), and plasma stability were concluded. Results showed that pre-mixing methane and argon before fed into plasma torch would be efficient in converting methane and acetylene production, with higher conversion of methane and lower SER to acetylene at a given specific energy. Also, methane in arc zone would cause periodic fluctuations of plasma voltage and power, which could be reduced by controlling methane fraction in feed. On the other hand, when methane was injected into argon plasma jet at torch outlet, the energy efficiency in converting methane and producing acetylene would be lower. And the plasma would barely participate in the reaction other than providing heat, but the erosion of electrode was much slower and slighter. It was also validated that the SER of acetylene was limited by the thermal loss of the setup due to size-effect of reactor.  相似文献   

7.
Cathode erosion phenomena in a transferred-arc plasma reactor   总被引:1,自引:0,他引:1  
Phenomena occurring on file surface of a thoriated tungsten cathode operating in a transferred-arc reactor were investigated. The effects of cathode geometry (pointed-tip vs. flat-tip) and plasma gas composition (argon vs. helium) on the rate and mechanisms of cathode erosion were studied experimentally by examining the morphology of the surface before and after runs of prespecified duration, up to one hour in length. For flat-tip cathodes in argon, the major characteristic was the migration of thoria and its concentration at segregated sites. Both geometries in helium operated at much higher temperatures, around the boiling point of tungsten, giving rise to extensive vaporization of cathode material, followed by apparent redeposition of the ionized species carried by file ionic current, in characteristic ringlike sites on the surface. Erosion rates were low and similar in magnitude, except for pointed-tip cathodes operated in argon, where the formation of a large molten sphere of tungsten and its subsequent release gave rise to a higher rate of erosion.  相似文献   

8.
A supersonically expanding cascaded arc plasma in argon is analyzed axperimentally by emission spectroscopy. The thermal cascaded arc plasma is allowed to expand through a conically shaped nozzle in the arc anode into the vacuum vessel. In the nozzle monomers (C n H v ) are injected. The monomers are dissociated and ionized by the argon carrier plasma, and transported toward a substrate by means of the expansion. Emission spectroscopy is used to obtain temperatures and particle densities. By varying external parameters (e.g., arc power, gas flow rates) plasma parameters can be linked with (e.g. parameters (e.g., refractive index).  相似文献   

9.
Long, laminar plasma jets at atmospheric pressure of pure argon and a mixture of argon and nitrogen with jet length up to 45 times its diameter could be generated with a DC arc torch by restricting the movement of arc root in the torch channel. Effects of torch structure, gas feeding, and characteristics of power supply on the length of plasma jets were experimentally examined. Plasma jets of considerable length and excellent stability could be obtained by regulating the generating parameters, including arc channel geometry, gas flow rate, and feeding methods, etc. Influence of flow turbulence at the torch nozzle exit on the temperature distribution of plasma jets was numerically simulated. The analysis indicated that laminar flow plasma with very low initial turbulent kinetic energy will produce a long jet with low axial temperature gradient. This kind of long laminar plasma jet could greatly improve the controllability for materials processing, compared with a short turbulent arc jet.  相似文献   

10.
Two kinds of hydrocarbon type monomers and three kinds of organosilicons were polymerized by a low‐temperature cascade arc argon plasma torch. Their deposition behaviors were studied as a function of experimental parameters and monomer elemental compositions. It was found that the normalized deposition rate (DR), expressed as deposition yield of DR/(FM)m, was determined by a composite operational parameter, W*(FM)c/(FM)m, where W is the power input, and (FM)c and (FM)m are the mass flow rates of carrier gases and monomers, respectively. Experimental results indicated that the deposition yield is highly dependent on the elementary compositions of monomers. Optical emission spectroscopy study on the argon plasma torch showed that the emission intensity of excited argon neutrals was proportional to the value of the parameter W*(FM)c. These results further certified that excited argon neutrals are the main energy carriers from the cascade arc column to activate monomers in the argon plasma torch. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 967–982, 1999  相似文献   

11.
Direct current (dc) plasma torch with inter-electrode inserts has the merits of fixed arc length, relative high enthalpy and may show advantages in future plasma processes where stability and controllability are must-have. Energy fluctuations in the plasma may result from power supply ripple, arc length variation, and/or acoustic oscillation. Using an improved power supply with a flat waveform, the characteristics of an argon plasma energy instabilities under reduced pressure were studied by means of simultaneously monitoring the arc voltage and arc current spectrum. Dependence of the arc fluctuation behavior on the plasma generating parameters, such as the current intensity, the plasma gas flow rates and the vacuum chamber pressure were investigated and discussed. Results show that the plasma torch has a typical U-shaped voltage-ampere characteristic (VAC). The correlation between the VAC and the probability of energy distributions was studied. Through pressure measurements at the cathode cavity and the vacuum chamber, the existence of sonic flow in the inter-electrode insert channel was confirmed.  相似文献   

12.
A possible reason for the high intensity of the ion emission in the spectrum excitation in a plasma jet generated by a two-jet argon arc plasmatron was considered. The injection of a test substance as an air–solid suspension between the plasma jets (i.e., mixing of a hot plasma with a cold directional carrier-gas flow) created a radial temperature gradient and induced an intense argon influx from the dense plasma jets to the cold axial plasma zone used for analytical purposes. Favorable conditions were thus created for the analyte Penning impact ionization with argon ions. This was confirmed by the existence of a correlation between an increase in the intensity of ion lines with the carrier-gas flow rate (cooling rate) and the total energy of ionization and excitation of an element. It was shown that charge transfer from the argon ion to the analyte occurred only in the case when the total energy of the element was lower than 16 eV, i.e., lower than the ionization energy of argon plus its kinetic energy.  相似文献   

13.
A numerical simulation has been performed of a high-velocity argon plasma arc flow in a low power arcjet including a finite-rate chemical kinetic model. Electrons, ions, molecular ions ( $ {\text{Ar}}_{2}^{ + } $ ), neutral atoms including the ground and excited argon atoms (Ar*) are treated as separate species in the plasma mixture. The chemical reactions considered are excitation, de-excitation, ionization and recombination processes, in which reactions involving excited argon atoms (Ar*) and molecular ions ( $ {\text{Ar}}_{2}^{ + } $ ) are taken into account. The relative importance of different production and loss processes in determining the densities of excited argon atoms and ions is calculated inside the constrictor and expansion portion of the nozzle. The roles of the excited argon atoms and molecular ions are investigated. It is found that excited argon atoms play an important role in the ionization of argon atoms in the core of plasma arc, while the molecular ions have a significant effect on the recombination process at the arc fringes inside the constrictor and in the arc attachment zone of the anode.  相似文献   

14.
An electric arc melter used for waste treatment processing is numerically studied. The effects of different plasma working gases are studied by using a laboratory scale test reactor. A two-dimensional finite difference approximation is used to solve the set of governing equations. The Navier-Stokes equations coupled with the combined Maxwell's equation for the electromagnetic fields is used to obtain the temperature and flow fields in the are melter. It is found that the energy efficiency of the air plasma is lower than that of an argon plasma. However, the melted soil volumes are larger using the air plasma than those using the argon plasma. The overall energy efficiency increases cis the gap between the cathode and the soil surface decreases. More uniform gas temperatures are found for the air plasma than that for the argon plasma. Result obtained from the laboratory-scale are melter is used as an input of the energy absorbed into the soil for the USBM arc melter simulation. Results show a maximum temperature of 2195 K at the center of the heat generation and a molten soil exit temperature of 1600 K.  相似文献   

15.
Cathode erosion continues to be a problem hindering the widespread application of plasma technology. In this work, cathode erosion was studied on titanium, stainless steel 314, copper-nickel 10% and 30%, and copper 122 for magnetically rotated arcs operating in argon, nitrogen, and argon/hydrogen mixtures at a constant magnetic flux density of 0.1 T Titanium and stainless steel gave very low erosion rates in argon (0.2 and 0.3, g/C respectively). Cupronickels were shown to be suitable for nitrogen and hydrogen plasmas. The slope of hydrogen solubility versus temperature in the cathode material was found to be important in determining hydrogen plasma erosion characteristics. When the plasma gas has a high solubility in the cathode material, or can react with the cathode, a negative erosion rate may result. When gas solubility in the cathode is low, oxide stability and mode of electron emission may govern the erosion rate. A high gas solubility in the cathode material, as with hydrogen, can result in mechanical erosion due to micro-explosions near the cathode surface.  相似文献   

16.
A mathematical model of the carbon arc process for the synthesis of fullerenes (C 60 , C 70 ) is developed. The two-dimensional model solves for the velocities, temperature, and total concentration of carbon species. The net emission coefficient method is used for the radiation term. The carbon species conservation equations consider the evaporation of carbon from the anode, cathode surface deposition, and carbon condensation. The thermodynamic and transport properties are calculated as a function of temperature and carbon mass fraction, using the method of Chapman–Enskog. Erosion rates used by the model are determined experimentally. Calculated fields of the velocities, temperatures, carbon mass fraction and current intensity are presented. Comparison is made of the behavior of the arc at 1 and 4 mm interelectrode gaps, and between operation in argon and in helium. The results of simulations provide a justification for the higher yields observed in helium compared to the argon case.  相似文献   

17.
A low-power d.c. plasma arc device was used to estimate the analytical characteristics of an Ar—N2 plasma arc compared to those of an argon plasma arc. When the flow rate of added nitrogen was varied from 0 to 1 l min-1, the Cd I 228.802-nm line showed a maximum signal-to-background ratio at a nitrogen flow rate of approximately 0.3 1 min-1 which corresponds to 0.23% of the total argon flow rate. Ratios of the signal intensities with the Ar—0.23%N2 and argon plasma arcs are given for the spectral lines of seventeen elements. Relatively higher ratios were found for the atom lines of the group VIII through IIIA elements in the periodic table. Better precision and lower detection limits were attained for aluminium and cadmium with the Ar—0.23%N2 plasma arc than with the argon plasma arc.  相似文献   

18.
将直流电弧等离子体技术用于甲烷热解制备纳米碳管的过程,并用TEM、ICP-CAS、TGA对所得固相产物进行了分析表征。结果表明,纳米碳管生长在铁质反应器壁面上,直径在20 nm~50 nm之间,具有多种形态,形态较为奇特的有螺旋状纳米碳管和放射状纳米碳管。该方法的特点是可同时副产大量氢气,实现了甲烷裂解制氢与合成纳米碳管两个过程的耦合。  相似文献   

19.
The effect of different atmospheres-air, nitrogen, argon and helium-on the analytical properties of the “graphite arc” method used to analyse solutions were investigated. It was shown that the use of an argon atmosphere enables an analyst to achieve detection limits for elements with ionization potentials greater than 8.5 eV thirty to one hundred times lower than those that can be achieved in air.  相似文献   

20.
The results of a twin-torch transferred de arc .study are presented. The arc system consists of two torches of opposite polarity, and a coupling zone of plasma jets located between them. The torch configuration increases the system reliability and efficiency during material plasma processing. The results of the study present data for the voltage-current characteristics, general behavior of the twin-torch arc, and spatial distribution of the plasma parameters. The plasma parameters have been measured using optical emission spectroscopy for a 200 A (20 k W) do arc, at atmospheric pressure, with argon and nitrogen introduced as plasma forming gases into the anode and the cathode units, respectively. The measurement technique used has allowed the determination of local electron density and temperature values in an inhomogeneous plasma volume having no axial sysmmetry. The data obtained illustrate the novel features of the twin-torch transfrred do arc for its applications in plasma processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号