首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 206 毫秒
1.
High resolution 2D NMR MAS spectra of liposomes, in particular 1H-13C chemical shifts correlations have been obtained on fluid lipid bilayers made of pure phospholipids for several years. We have investigated herein the possibility to obtain high resolution 2D MAS spectra of cholesterol embedded in membranes, i.e. on a rigid molecule whose dynamics is characterized mainly by axial diffusion without internal segmental mobility. The efficiency of various pulse sequences for heteronuclear HETCOR has been compared in terms of resolution, sensitivity and selectivity, using either cross polarization or INEPT for coherence transfer, and with or without MREV-8 homonuclear decoupling during t1. At moderately high spinning speed (9 kHz), a similar resolution is obtained in all cases (0.2 ppm for 1H(3,4), 0.15 ppm for 13C(3,4) cholesterol resonances), while sensitivity increases in the order: INEPT < CP(x4) < CP + MREV. At reduced spinning speed (5 kHz), the homonuclear dipolar coupling between the two geminal protons attached to C(4) gives rise to spinning sidebands from which one can estimate a H-H dipolar coupling of 10 kHz which is in good agreement with the known dynamics of cholesterol in membranes.  相似文献   

2.
Magic angle spinning (MAS) NMR with Lee-Goldburg cross-polarization (LG-CP) is used to promote long-range heteronuclear transfer of magnetization and to constrain a structural model for uniformly labeled chlorophyll a/H(2)O. An effective maximum transfer range d(max) can be determined experimentally from the detection of a gradually decreasing series of intramolecular correlations with the (13)C along the molecular skeleton. To probe intermolecular contacts, d(max) can be set to approximately 4.2 A by choosing an LG-CP contact time of 2 ms. Long-range (1)H-(13)C correlations are used in conjunction with carbon and proton aggregation shifts to establish the stacking of the chlorophyll a (Chl a) molecules. First, high-field (14.1 T) 2-D MAS NMR homonuclear ((13)C-(13)C) dipolar correlation spectra provide a complete assignment of the carbon chemical shifts. Second, proton chemical shifts are obtained from (1)H-(13)C heteronuclear dipolar correlation spectroscopy in high magnetic field. The shift constraints and long-range (1)H-(13)C intermolecular correlations reveal a 2-D stacking homologous to the molecular arrangement in crystalline solid ethyl-chlorophyllide a. A doubling of a small subset of the carbon resonances, in the 7-methyl region of the molecule, provides evidence for two marginally different well-defined molecular environments. Evidence is found for the presence of neutral structural water molecules forming a hydrogen-bonded network to stabilize Chl a sheets. In line with the microcrystalline order observed for the rings, the long T(1)'s, and absence of conformational shifts for the (13)C in the phytyl tails, it is proposed that the Chl a form a rigid 3-D space-filling structure. Probably the only way this can be realized with the sheets is by forming bilayers with interpenetration of elongated tails. Such a 3-D space-filling organization of the aggregated Chl a from MAS NMR would match existing models inferred from electron microscopy and low-resolution X-ray powder diffraction, while a micellar model based on neutron diffraction and antiparallel stacking observed in solution can be discarded.  相似文献   

3.
An in-depth account of the effects of homonuclear couplings and multiple heteronuclear couplings is given for a recently published technique for (1)H--(13)C dipolar correlation in solids under very fast MAS, where the heteronuclear dipolar coupling is recoupled by means of REDOR pi-pulse trains. The method bears similarities to well-known solution-state NMR techniques, which form the framework of a heteronuclear multiple-quantum experiment. The so-called recoupled polarization-transfer (REPT) technique is versatile in that rotor-synchronized (1)H--(13)C shift correlation spectra can be recorded. In addition, weak heteronuclear dipolar coupling constants can be extracted by means of spinning sideband analysis in the indirect dimension of the experiment. These sidebands are generated by rotor encoding of the reconversion Hamiltonian. We present generalized variants of the initially described heteronuclear multiple-quantum correlation (HMQC) experiment, which are better suited for certain applications. Using these techniques, measurements on model compounds with (13)C in natural abundance, as well as simulations, confirm the very weak effect of (1)H--(1)H homonuclear couplings on the spectra recorded with spinning frequencies of 25--30 kHz. The effect of remote heteronuclear couplings on the spinning-sideband patterns of CH(n) groups is discussed, and (13)C spectral editing of rigid organic solids is shown to be practicable with these techniques.  相似文献   

4.
The spectra of molecules oriented in liquid crystalline media are dominated by partially averaged dipolar couplings. In the 13C-1H HSQC, due to the inefficient hetero-nuclear dipolar decoupling in the indirect dimension, normally carried out by using a pi pulse, there is a considerable loss of resolution. Furthermore, in such strongly orienting media the 1H-1H and 13C-1H dipolar couplings leads to fast dephasing of transverse magnetization causing inefficient polarization transfer and hence the loss of sensitivity in the indirect dimension. In this study we have carried out 13C-1H HSQC experiment with efficient polarization transfer from 1H to 13C for molecules aligned in liquid crystalline media. The homonuclear dipolar decoupling using FFLG during the INEPT transfer delays and also during evolution period combined with the pi pulse heteronuclear decoupling in the t1 period has been applied. The studies showed a significant reduction in partially averaged dipolar couplings and thereby enhancement in the resolution and sensitivity in the indirect dimension. This has been demonstrated on pyridazine and pyrimidine oriented in the liquid crystal. The two closely resonating carbons in pyrimidine are better resolved in the present study compared to the earlier work [H.S. Vinay Deepak, Anu Joy, N. Suryaprakash, Determination of natural abundance 15N-1H and 13C-1H dipolar couplings of molecules in a strongly orienting media using two-dimensional inverse experiments, Magn. Reson. Chem. 44 (2006) 553-565].  相似文献   

5.
A method for selectively suppressing the signals of OH and NH protons in (1)H combined rotation and multiple-pulse spectroscopy (CRAMPS) and in (1)H-(13)C heteronuclear correlation (HETCOR) solid-state NMR spectra is presented. It permits distinction of overlapping CH and OH/NH proton signals, based on the selective dephasing of the magnetization of OH and NH protons by their relatively large (1)H chemical-shift anisotropies. For NH protons, the (14)N-(1)H dipolar coupling also contributes significantly to this dephasing. The dephasing is achieved by a new combination of heteronuclear recoupling of these anisotropies with (1)H homonuclear dipolar decoupling. Since the 180 degrees pulses traditionally used for heteronuclear dipolar and chemical-shift anisotropy recoupling would result in undesirable homonuclear dephasing of proton magnetization, instead the necessary inversion of the chemical-shift Hamiltonian every half rotation period is achieved by inverting the phases of all the pulses in the HW8 multiple-pulse sequence. In the HETCOR experiments, carefully timed (13)C 180 degrees pulses remove the strong dipolar coupling to the nearby (13)C spin. The suppression of NH and OH peaks is demonstrated on crystalline model compounds. The technique in combination with HETCOR NMR is applied to identify the CONH and NH-CH groups in chitin and to distinguish NH and aromatic proton peaks in a peat humin.  相似文献   

6.
We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR spectra of membrane proteins in fluid lipid membranes with broad lines and high redundancy in the primary sequence. We implemented this approach in both heteronuclear (15)N-(13)C(α) and homonuclear (13)C-(13)C dipolar assisted rotational resonance (DARR) correlation experiments. We demonstrate its efficacy for the membrane protein phospholamban reconstituted in fluid PC/PE/PA lipid bilayers. The main advantage of this method is to discriminate overlapped (13)C(α) resonances by strategically labeling the preceding residue. This method is highly complementary to (13)C(i-1)(')-(15)N(i)-(13)C(i)(α) and (13)C(i-1)(α)-(15)N(i-1)-(13)C(i)(') experiments to distinguish inter-residue spin systems at a minimal cost to signal-to-noise.  相似文献   

7.
An in-depth account of the effects of homonuclear couplings and multiple heteronuclear couplings is given for a recently published technique for 1H–13C dipolar correlation in solids under very fast MAS, where the heteronuclear dipolar coupling is recoupled by means of REDOR π-pulse trains. The method bears similarities to well-known solution-state NMR techniques, which form the framework of a heteronuclear multiple-quantum experiment. The so-called recoupled polarization-transfer (REPT) technique is versatile in that rotor-synchronized 1H–13C shift correlation spectra can be recorded. In addition, weak heteronuclear dipolar coupling constants can be extracted by means of spinning sideband analysis in the indirect dimension of the experiment. These sidebands are generated by rotor encoding of the reconversion Hamiltonian. We present generalized variants of the initially described heteronuclear multiple-quantum correlation (HMQC) experiment, which are better suited for certain applications. Using these techniques, measurements on model compounds with 13C in natural abundance, as well as simulations, confirm the very weak effect of 1H–1H homonuclear couplings on the spectra recorded with spinning frequencies of 25–30 kHz. The effect of remote heteronuclear couplings on the spinning-sideband patterns of CHn groups is discussed, and 13C spectral editing of rigid organic solids is shown to be practicable with these techniques.  相似文献   

8.
The design of variants of the swept-frequency two-pulse phase modulation sequence for heteronuclear dipolar decoupling in solid-state NMR is reported, their performance evaluated, and compared with other established sequences like TPPM and SPINAL. Simulations performed to probe the role of the homonuclear (1)H-(1)H bath show that the robustness of the decoupling schemes improves with the size of the bath. In addition, these simulations reveal that the homonuclear (1)H-(1)H bath also leads to broad baselines at high MAS rates. Results from a study of the SPINAL decoupling scheme indicate that optimisation of the starting phase and phase increment improves its performance and efficiency at high MAS rates. Additionally, experiments performed on a liquid crystal display the role of the initial phase in SPINAL-64 and sequences in the SW(f)-TPPM family.  相似文献   

9.
The CP/MAS 13C NMR spectra of crystalline L-leucine and DL-leucine at 7 T are compared with previously reported spectra at lower field strengths. An increasing dominance of chemical shift effects over residual 14N-13C dipolar interactions is observed on the C alpha and C beta splittings with increasing field strength. A new structure is observed in the 25 ppm region of both samples. The spectra in this region were assigned by application of the depolarisation-repolarisation method. The assignment showed differences in the ordering of peaks between solid state and liquid state chemical shifts.  相似文献   

10.
The spin dynamics of NMR spin locking of proton magnetization under a frequency-switched Lee-Goldburg (FSLG) pulse sequence is investigated for a better understanding of the line-narrowing mechanism in PISEMA experiments. For the sample of oriented 15N(1,3,5,7)-labeled gramicidin A in hydrated DMPC bilayers, it is found that the spin-lattice relaxation time T(1rho)(H) in the tilted rotating frame is about five times shorter when the 1H magnetization is spin locked at the magic angle by the FSLG sequence compared to the simple Lee-Goldburg sequence. It is believed that the rapid phase alternation of the effective fields during the FSLG cycles results in averaging of the spin lock field so that the spin lock becomes less efficient. A FSLG supercycle has been suggested here to slow the phase alternation. It has been demonstrated experimentally that a modified PISEMA pulse sequence with such supercycles gives rise to about 30% line narrowing in the dipolar dimension in the PISEMA spectra compared to a standard PISEMA pulse sequence.  相似文献   

11.
A new approach for high-resolution solid-state heteronuclear multiple-quantum MAS NMR spectroscopy of dipolar-coupled spin-12 nuclei is introduced. The method is a heteronuclear chemical shift correlation technique of abundant spins, like 1H with rare spins, like 13C in natural abundance. High resolution is provided by ultra-fast MAS and high magnetic fields, high sensitivity being ensured by a direct polarization transfer from the abundant protons to 13C. In a rotor-synchronized variant, the method can be used to probe heteronuclear through-space proximities, while the heteronuclear dipolar coupling constant can quantitatively be determined by measuring multiple-quantum spinning-sideband patterns. By means of recoupling, even weak heteronuclear dipolar interactions are accessible. The capabilities of the technique are demonstrated by measurements on crystalline L-tyrosine hydrochloride salt.  相似文献   

12.
We present the first application of switched angle spinning (SAS) to correlate the first-order dipolar spectrum of a liquid crystalline sample with the isotropic magic angle spinning (MAS) spectrum in a two-dimensional experiment. In this experiment we are able to select the degree of dipolar couplings introduced via mechanical manipulations of the liquid crystal director in a single oriented sample. The (19)F SAS-COSY correlation of iodotrifluoroethylene, an AMX spin system, dissolved in the nematic liquid crystal 4-octylphenyl-2-chloro-4-(4-heptylbenzoyloxy)-benzoate provides assignment of both the J and dipolar couplings in a single experiment. This work demonstrates the use of oriented samples and sample spinning to resolve homonuclear dipolar couplings using isotropic chemical shifts.  相似文献   

13.
Multiple pulse line narrowing techniques can be used to improve resolution and sensitivity in solid state NMR imaging. For example, pulse sequences which remove homonuclear dipolar broadening have been used to image proton-containing materials. Further enhancements in resolution and sensitivity are obtained by removing inhomogeneous interactions such as chemical shift, susceptibility, and heteronuclear dipolar broadening. Pulse sequences have been designed which provide efficient line narrowing over large spectral widths by taking into account the experimenter's control over the amplitude and time dependence of the gradient-induced resonance offset. These methods have been applied to centimeter sized samples to obtain images of polymers, composite materials, and gas-solid chemical reactions. T1 and T2 contrast allows differentiation between materials.  相似文献   

14.
In this article, we show the potential for utilizing proton-detected heteronuclear single quantum correlation (HSQC) NMR in rigid solids under ultra-fast magic angle spinning (MAS) conditions. The indirect detection of carbon-13 from coupled neighboring hydrogen nuclei provides a sensitivity enhancement of 3- to 4-fold in crystalline amino acids over direct-detected versions. Furthermore, the sensitivity enhancement is shown to be significantly larger for disordered solids that display inhomogeneously broadened carbon-13 spectra. Latrodectus hesperus (Black Widow) dragline silk is given as an example where the sample is mass-limited and the sensitivity enhancement for the proton-detected experiment is 8- to 13-fold. The ultra-fast MAS proton-detected HSQC solid-state NMR technique has the added advantage that no proton homonuclear decoupling is applied during the experiment. Further, well-resolved, indirectly observed carbon-13 spectra can be obtained in some cases without heteronuclear proton decoupling.  相似文献   

15.
The presence of two independent methylamine species in microporous aluminophosphate IST-1 (|(CH(3)NH(2))(4)(CH(3)NH(+)(3))(4)(OH(-))(4)|[Al(12)P(12)O(48)]) has been shown previously by synchrotron powder X-ray diffraction. One of these species, [N(1)-C(1)], links to a six-coordinated framework Al-atom [Al(1)], while the other methylamine [N(2)-C(2)] is protonated and hydrogen-bonded to three O-atoms [O(1), O(2) and O(12)]. We revisit the structure of IST-1 and report the complete assignment of the (1)H NMR spectra by combining X-ray data and high-resolution heteronuclear/homonuclear solid-state NMR techniques based on frequency-switched Lee-Goldburg homonuclear decoupling and (31)P-(31)P homonuclear recoupling. Careful analysis of the 2D (1)H-X homonuclear correlation (X=(1)H) and 2D heteronuclear correlation (X=(13)C, (31)P and (27)Al) spectra allowed the distinction of both methylamine species and the assignment of all (31)P and (13)C resonances. For the first time at a relatively high (9.4 T) magnetic field, symmetric doublet patterns have been observed in the (13)C spectra, caused by the influence of the (14)N second-order quadrupolar interaction.  相似文献   

16.
The acquisition of bidimensional heteronuclear nuclear magnetic resonance local field spectra under moderately fast magic-angle spinning (MAS) conditions is discussed. It is shown both experimentally and with the aid of numerical simulations on multispin systems that when sufficiently fast MAS rates are employed, quantitative dipolar sideband patterns from directly bonded spin pairs can be acquired in the absence of 1H–1H multiple-pulse homonuclear decoupling even for “real” organic solids. The MAS speeds involved are well within the range of commercially available systems (10–14 kHz) and provide sidebands with sufficient intensity to enable a reliable quantification of heteronuclear dipolar couplings from methine groups. Simulations and experiments show that useful information can be extracted in this manner even from more tightly coupled –CH2– moieties, although the agreement with the patterns simulated solely on the basis of heteronuclear interactions is not in this case as satisfactory as for methines. Preliminary applications of this simple approach to the analysis of molecular motions in solids are presented; characteristics and potential extensions of the method are also discussed.  相似文献   

17.
The experimental parameters critical for the implementation of multidimensional solid-state NMR experiments that incorporate heteronuclear spin exchange at the magic angle are discussed. This family of experiments is exemplified by the three-dimensional experiment that correlates the (1)H chemical shift, (1)H-(15)N dipolar coupling, and (15)N chemical shift frequencies. The broadening effects of the homonuclear (1)H-(1)H dipolar couplings are suppressed using flip-flop (phase- and frequency-switched) Lee-Goldburg irradiations in both the (1)H chemical shift and the (1)H-(15)N dipolar coupling dimensions. The experiments are illustrated using the (1)H and (15)N chemical shift and dipolar couplings in a single crystal of (15)N-acetylleucine.  相似文献   

18.
In the present work a novel methodology is developed for the unambiguous discrimination of enantiomers aligned in chiral liquid crystalline media and the simultaneous determination of 1H-1H and 13C-1H couplings in a single experiment. An INEPT transfer and back transfer of magnetization to protons retain the 13C edited 1H magnetization which is utilized to generate spin selective homonuclear triple quantum coherence of dipolar coupled methyl protons. Spin selective correlation of triple quantum to single quantum coherence results in spin state selective detection by 13C spin and the remaining passive protons. The difference between the successive transitions in the triple quantum dimension pertains to sum of the passive couplings and results in enhanced resolution by a factor of three. This results in unambiguous chiral visualization. The masked 13C satellite transitions in the single quantum spectrum are extracted for chiral discrimination. The technique retains all the passive homo- and heteronuclear couplings in the triple quantum dimension by the application of non-selective refocusing pulse on 1H as well as on 13C spins. This, however, refocuses the chemical shift evolution in the triple quantum dimension, and also overcomes the problem of field inhomogeneity. The method enables the determination of spectral information which is otherwise not possible to derive from the broad and featureless proton spectra. The elegant experimental technique has been demonstrated on different chiral molecules.  相似文献   

19.
A pulse scheme for phase sensitive detection of two-dimensional (2D) homonuclear correlation magic angle spinning (MAS) NMR spectra is proposed. This scheme combines the time proportional phase increment phase cycling scheme and the time reversal 2D MAS experiment. This approach enables the direct detection of purely absorptive 2D MAS spectra, containing cross peaks that connect only diagonal peaks of dipolar correlated spins.  相似文献   

20.
A new two-dimensional heteronuclear multiple-quantum magic-angle spinning (MQ MAS) experiment is presented which combines high resolution for the half-integer quadrupolar nucleus with information about the dipolar coupling between the quadrupolar nucleus and a spin I=1/2 nucleus. Homonuclear MQ coherence is initially created for the half-integer quadrupolar nucleus by a single pulse as in a standard MQ MAS experiment. REDOR recoupling of the heteronuclear dipolar coupling then allows the creation of a heteronuclear multiple-quantum coherence comprising multiple- and single-quantum coherence of the quadrupolar and spin I=1/2 nucleus, respectively, which evolves during t1. Provided that the t1 increment is not rotor synchronized, rotor-encoded spinning-sideband patterns are observed in the indirect dimension. Simulated spectra for an isolated IS spin pair show that these patterns depend on the recoupling time, the magnitude of the dipolar coupling, the quadrupolar parameters, as well as the relative orientation of the quadrupolar and dipolar principal axes systems. Spectra are presented for Na2HPO4, with the heteronuclear 23Na-1HMQ MAS experiments beginning with the excitation of 23Na (spin I=3/2) three-quantum coherence. Coherence counting experiments demonstrate that four- and two-quantum coherences evolve during t1. The heteronuclear spinning-sideband patterns observed for the three-spin H-Na-H system associated with the Na(2) site are analyzed. For an IS2 system, simulated spectra show that, considering the free parameters, the spinning-sideband patterns are particularly sensitive to only, first, the angle between the two IS internuclear vectors and, second, the two heteronuclear dipolar couplings. It is demonstrated that the proton localization around the Na(2) site according to the literature crystal structure of Na2HPO4 is erroneous. Instead, the experimental data is consistent with two alternative different structural arrangements, whereby either there is a deviation of 10 degrees from linearity for the case of two identical Na-H distances, or there is a linear arrangement, but the two Na-H distances are different. Furthermore, the question of the origin of spinning-sidebands in the (homonuclear) MQ MAS experiment is revisited. It is shown that the asymmetric experimental MQ sideband pattern observed for the low-C(Q) Na(2) site in Na(2)HPO4 can only be explained by considering the 23Na chemical shift anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号