首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 613 毫秒
1.
The lithiation of 2,7-dihydrodinaphthoheteroepines (5) with 2.2 equiv of lithium naphthalenide in THF at −78 °C gives dianionic intermediates 8, which by reaction with different electrophiles [H2O, D2O, tBuCHO, Me2CO, Et2CO, (CH2)4CO, (CH2)5CO] at the same temperature, followed by hydrolysis, leads to unsymmetrically 2,2′-disubstituted binaphthyls 6. When the lithiation is performed with an excess of lithium in the presence of a catalytic amount of 4,4′-di-tert-butylbiphenyl (DTBB, 10 mol %), a double reductive cleavage takes place to give dianionic intermediate 9, which by reaction with different electrophiles [H2O, Me2CO, Et2CO, (CH2)4CO, (CH2)5CO], followed by hydrolysis with water, yields symmetrically 2,2′-disubstituted binaphthyls 7. In the case of starting from (R)-5a, the reductive opening by treatment with 2.2 equiv of lithium naphthalenide followed by reaction with H2O or (CH2)5CO as electrophiles and final hydrolysis, leads to enantiomerically pure compounds (R)-6aa and (R)-6af, respectively.  相似文献   

2.
The lithiation of 4-heterosubstituted dibenzothiins 1 (phenoxathiin, phenothiazine and thianthrene) with lithium and a catalytic amount of 4,4′-di-tert-butylbiphenyl (DTBB, 7.5% molar) in THF at temperatures ranging from −90 to −78°C gives the corresponding functionalised organolithium intermediate I, which by reaction with different electrophiles [H2O, D2O, ButCHO, PhCHO, Ph(CH2)2CHO, Me2CO, Et2CO, (CH2)5CO, (CH2)7CO] at the same temperature, followed by hydrolysis, gives the expected functionalised thiols 2. Cyclisation of some thiols 2 under acidic conditions leads to the corresponding seven-membered dibenzo heterocycles 5. In the case of thianthrene 1c, after addition of a carbonyl compound as the first electrophile [MeCHO, ButCHO, Me2CO, Et2CO, (CH2)5CO], the corresponding intermediate II can be lithiated again and react with a second electrophile. Diols 3 are obtained after hydrolysis when a carbonyl compound [ButCHO, PhCHO, Ph(CH2)2CHO, Me2CO, Et2CO, (CH2)5CO] is used as the second electrophile. Acidic cyclisation of diols 3 gives substituted phthalans 6 in almost quantitative yields. Finally, in the case of using carbon dioxide as the second electrophile, phthalides 4 are obtained after acidic hydrolysis.  相似文献   

3.
《Tetrahedron》2004,60(21):4655-4662
The lithiation of 1H,3H-benzo[de]isochromene (6) with lithium and a catalytic amount of 4,4′-di-tert-butylbiphenyl (DTBB, 5% molar) in THF at −50 °C gives dianionic intermediate 7, which by reaction with different electrophiles {H2O, D2O, tBuCHO, PhCHO, Me2CO, (CH3CH2)2CO, [CH3(CH2)4]2CO, (CH2)5CO, (CH2)7CO, (−)-menthone} at the same temperature followed by hydrolysis leads to functionalised alcohols 8. If after addition of a carbonyl compound as the first electrophile [tBuCHO, (CH2)5CO, (−)-menthone], the resulting dialcoholate 9 is allowed to react at 0 °C, a second lithiation takes place to give intermediate 10 which by reaction with a second electrophile [H2O, tBuCHO, (CH2)5CO, CO2], yields, after hydrolysis, 1,8-difunctionalised naphthalenes 11. Cyclization under acidic conditions of diols 8e-i gives oxygen-containing eight-membered heterocycles, which are homologous to the starting material 6.  相似文献   

4.
Cecilia Gómez 《Tetrahedron》2007,63(22):4655-4662
The reaction of phenylcyclopropane (1) with an excess of lithium and a catalytic amount of DTBB (2.5% molar) in THF at room temperature, followed by treatment with an electrophile [Me3SiCl, PhMe2SiCl, t-BuCHO, PhCHO, Me2CO, Et2CO, (CH2)5CO, adamantan-2-one, i-Pr2CO, di(cyclopropyl)ketone] and final hydrolysis with water leads to allylic products 10 or 11 depending on the structure of the electrophile: whereas for chlorosilanes or crowded ketones γ-products 11 are isolated, for aldehydes and non-congested ketones α-products 10 are formed. The application of the same protocol to 1,1-diphenylcyclopropane (7) leads to a mixture of products 13-15 resulting from the introduction of one or two electrophilic fragments to the open-chain mono- or dilithiated intermediate: also in this case the regiochemistry of the reaction is governed by steric reasons.  相似文献   

5.
The reaction of 1,3-dicloro-2-butene (1; 5:1 Z:E-mixture) with lithium powder and a catalytic amount of 4,4′-di-tert-butylbiphenyl (DTBB, 1% molar) in the presence of different electrophiles [EtCHO, PriCHO, ButCHO, c-C6H11CHO, Me2CO, Et2CO, (CH2)4CO, (CH2)5CO, (c-C3H5)2CO, Me3SiCl] in THF at temperatures ranging between −78 and −50°C gives, after hydrolysis with water, the corresponding products 2 in different Z:E-ratios depending on the electrophile used. Treatment of some diols 2 with hydrochloric acid gives dienic alcohols 3 or substituted dihydropyrans 4, depending on the structure of the starting diol. Finally, the same dichlorinated starting material is transformed into the corresponding allylic amines derived from morpholine and benzyl methyl amine and submitted to the same DTBB-catalysed lithiation as above, so after reaction with different electrophiles [ButCHO, c-C6H11CHO, Me2CO, Et2CO, (CH2)4CO, (CH2)5CO, Me3SiCl] and final hydrolysis with water, compounds 7 are isolated having a Z-configuration. A mechanistic explanation for this behaviour is given.  相似文献   

6.
The reaction of 2,2-diphenylmethylenecyclopropane (5) with an excess of lithium and a catalytic amount of DTBB (4 mol %) in THF at −78 °C leads to the formation of dilithiated species 6-8 by reductive opening of the cyclopropane ring. Further reaction of these intermediates with different electrophiles [E = H2O, D2O, CH2CMeCH2Cl, Me3SiCl, Me3SiCH2Cl, t-BuCHO, Me2CO, Et2CO, n-Pr2CO, i-Pr2CO, t-Bu2CO, (CH2)5CO, Ph2CO and adamantanone] is highly regioselective, yielding exclusively the corresponding products 9, after hydrolysis with water. However, when 3-chloro-2-(chloromethyl)propene (14) is used as a dielectrophile, the cyclisation to give a six-membered ring takes place through intermediate 6, giving compound 16 as the only reaction product.  相似文献   

7.
A series of tricarbonyl rhenium(I) and manganese(I) complexes of the electroactive 2-(pyrazolyl)-4-toluidine ligand, H(pzAnMe), has been prepared and characterized including by single crystal X-ray diffraction studies. The reactions between H(pzAnMe) and M(CO)5Br afford fac-MBr(CO)3[H(pzAnMe)] (M = Mn, 1a; Re, 1b) complexes. The ionic species {fac-M(CH3CN)(CO)3[H(pzAnMe)]}(PF6) (M = Mn, 2a; Re, 2b) were prepared by metathesis of 1a or 1b with TlPF6 in acetonitrile. Complexes 1a and 1b partly ionize to {M(CH3CN)(CO)3[H(pzAnMe)]+}(Br) in CH3CN but retain their integrity in less donating solvents such as acetone or CH2Cl2. Each of the four metal complexes reacts with (NEt4)(OH) in CH3CN to give poorly-soluble crystalline [fac-M(CO)3(μ-pzAnMe)]2 (M = Mn, 3a; Re, 3b). The solid state structures of 3a and 3b are of centrosymmetric dimeric species with bridging amido nitrogens and with pyrazolyls disposed trans- to the central planar M2N2 metallacycle. In stark contrast to the diphenylboryl derivatives, Ph2B(pzAnMe), none of the tricarbonyl group 7 metal complexes are luminescent.  相似文献   

8.
A straightforward method for the preparation of metallo carbosiloxanes of type Si(OCH2CH2CH2SiMe2[OCH2PPh2M(CO)n])4 (n = 3, M = Ni, 7a; n = 4, M = Fe, 7b; n = 5: M = Mo, 7c; M = W, 7d), Si(OCH2CH2CH2SiMe[OCH2PPh2Ni(CO)3]2)4 (8) and Me2Si(OCH2CH2CH2SiMe[OCH2PPh2Ni(CO)3]2)2 (11) is described. The reaction of Si(OCH2CH2CH2SiMeXCl)4 (1: X = Me, 2: X = Cl) or Me2Si(OCH2CH2CH2SiMeCl2)2 (9) with HOCH2PPh2 (3) produces Si(OCH2CH2CH2SiMe2(OCH2PPh2))4 (4), Si(OCH2CH2CH2SiMe(OCH2PPh2)2)4 (5) or Me2Si(OCH2CH2CH2SiMe(OCH2PPh2)2)2 (10) in presence of DABCO. Treatment of the latter molecules with Ni(CO)4 (6a), Fe2(CO)9 (6b), M(CO)5(Thf) (6c: M = Mo; 6d: M = W), respectively, gives the title compounds 7a-7d, 8 and 11 in which the PPh2 groups are datively bound to a 16-valence-electron metal carbonyl fragment.The formation of analytical pure and uniform branched and dendritic metallo carbosiloxanes is based on elemental analysis, and IR, 1H, 13C{1H}, 29Si{1H} and 31P{1H} NMR spectroscopic studies. In addition, ESI-TOF mass spectrometric studies were carried out.  相似文献   

9.
The reaction of biphenylene (1) with an excess of lithium powder (1:14 molar ratio) and a catalytic amount of DTBB (10 mol %) in THF at room temperature leads to the formation of the dilithiated species I by reductive opening of the four-membered ring. Further reaction of this intermediate with different electrophiles [Electrophile = H2O, D2O, Me3SiCl, t-BuCHO, Et2CO, n-Pr2CO, (CH2)5CO, Ph2CO and adamantanone] at 0 °C yields the corresponding products 2, after hydrolysis with water. Cyclisation of some representative examples of compounds 2 with H3PO4 gives the corresponding dibenzoxepines 3.  相似文献   

10.
Treatment of PhMe2SiCH2GeMe3 (1) with t-BuLi followed by addition of Me3ECl, E = Sn, Pb, results in the formation of phenylsilyl(germyl)stannyl- and phenylsilyl(germyl)plumbyl-methanes, PhMe2Si(Me3Ge)(EMe3)CH, E = Sn (2), Pb (3). The thermal reaction of 1, 2 and 3 with Cr(CO)6 yields the corresponding aryl-Cr(CO)3 analogs, {(η6-C6H5)Cr(CO)3}Me2Si(Me3Ge)CH2 (4) and {(η6-C6H5)Cr(CO)3}Me2Si(Me3Ge)(EMe3)CH, E = Sn (5), Pb (6). The thermal treatment of 2 with Cr(CO)6 in a wet THF/di-n-butyl ether mixture results in the formation of the arenechromiumtricarbonyl silanol {(η6-C6H5)Cr(CO)3}Me2SiOH (7) which exhibits amphiphilic character, forming H-bonded chains in the solid state in a head-to-head arrangement of the areneCr(CO)3 units.  相似文献   

11.
The allyl-substituted group 4 metal complexes [M{(R)CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti, R = CH2CHCH2, (2); R = CH2C(CH3)CH2 (3); M = Zr, R = CH2CHCH2 (4), R = CH2C(CH3)CH2 (5)] have been synthesized by the reaction of allyl ansa-magnesocene derivatives and the tetrachloride salts of the corresponding transition metal. The dialkyl complexes ] [M = Ti, R = CH2=CHCH2, R′ = Me (6), R′ = CH2Ph (7); R = CH2C(CH3)CH2, R′ = Me (8), R′ = CH2Ph (9); M = Zr, R = CH2CHCH2, R′ = Me (10), R′ = CH2Ph (11); R = CH2C(CH3)CH2, R′ = Me (12), R′ = CH2Ph (13)] have been synthesized by the reaction of the corresponding ansa-metallocene dichloride complexes 2-5 and two molar equivalents of the alkyl Grignard reagent. Compounds 2-5 reacted with H2 under catalytic conditions (Wilkinson’s catalyst or Pd/C) to give the hydrogenation products [M{(R)CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = CH2CH2CH3 (14) or R = CH2CH(CH3)2 (15); M = Zr and R = CH2CH2CH3 (16) or R = CH2CH(CH3)2 (17)]. The reactivity of 2-5 has also been tested in hydroboration and hydrosilylation reactions. The hydroboration reactions of 3, 4 and 5 with 9-borabicyclo[3.3.1]nonane (9-BBN) yielded the complexes [M{(9-BBN)CH2CH(R)CH2CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = H (18); M = Zr and R = H (19) or R = CH3 (20)]. The reaction with the silane reagents HSiMe2Cl gave the corresponding [M{ClMe2SiCH2CHRCH2CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = H (21); M = Zr and R = H (22) or R = CH3 (23)]. The reaction of 22 with t-BuMe2SiOH produced a new complex [Zr{t-BuMe2SiOSi(Me2)CH2CH2CH2CH(η5-C5Me4)(η5-C5H4)}Cl2] (24) through the formation of Si-O-Si bonds. On the other hand, reactivity studies of some zirconocene complexes were carried out, with the insertion reaction of phenyl isocyanate (PhNCO) into the zirconium-carbon σ-bond of [Zr{(n-Bu)CH(η5-C5Me4)(η5-C5H4)}2Me2] (25) giving [{(n-Bu)CH(η5-C5Me4)(η5-C5H4)]}Zr{Me{κ2-O,N-OC(Me)NPh}] as a mixture of two isomers 26a-b. The reaction of [Zr{(n-Bu)(H)C(η5-C5Me4)(η5-C5H4)}(CH2Ph)2] (27) with CO also provided a mixture of two isomers [{(n-Bu)CH(η5-C5Me4)(η5-C5H4)]}Zr(CH2Ph){κ2-O,C-COCH2Ph}] 28a-b. The molecular structures of 4, 11, 16 and 17 have been determined by single-crystal X-ray diffraction studies.  相似文献   

12.
The reaction of biphenyl (1) with an excess of lithium in THF at room temperature leads to a solution of the corresponding dianion (I), which by successive reactions with an alkyl fluoride [E1 = n-C8H17F, c-C5H9CH2F, CH2CH(CH2)4F] at 0 °C and another electrophile [E2 = n-C4H9Br, Et2CO, Me2C(O)CH2, i-Pr3SiCl] at −78 °C yields the corresponding 1,4-disubstituted 1,4-dihydrobiphenyls 3 in a regioselective manner, as mixtures of cis- and trans-isomers. The diastereomers of 3 are separated by column chromatography.  相似文献   

13.
Addition of excesses of N-heterocyclic carbenes (NHCs) IEt2Me2, IiPr2Me2 or ICy (IEt2Me2 = 1,3-diethyl-4,5-dimethylimidazol-2-ylidene; IiPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene; ICy = 1,3-dicyclohexylimidazol-2-ylidene) to [HRh(PPh3)4] (1) affords an isomeric mixture of [HRh(NHC)(PPh3)2] (NHC = IEt2Me2 (cis-/trans-2), IiPr2Me2 (cis-/trans-3), ICy (cis-/trans-4) and [HRh(NHC)2(PPh3)] (IEt2Me2(cis-/trans-5), IiPr2Me2 (cis-/trans-6), ICy (cis-/trans-7)). Thermolysis of 1 with the aryl substituted NHC, 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene (IMesH2), affords the bridging hydrido phosphido dimer, [{(PPh3)2Rh}2(μ-H)(μ-PPh2)] (8), which is also the reaction product formed in the absence of carbene. When the rhodium precursor was changed from 1 to [HRh(CO)(PPh3)3] (9) and treated with either IMes (=1,3-dimesitylimidazol-2-ylidene) or ICy, the bis-NHC complexes trans-[HRh(CO)(IMes)2] (10) and trans-[HRh(CO)(ICy)2] (11) were formed. In contrast, the reaction of 9 with IiPr2Me2 gave [HRh(CO)(IiPr2Me2)2] (cis-/trans-12) and the unusual unsymmetrical dimer, [(PPh3)2Rh(μ-CO)2Rh(IiPr2Me2)2] (13). The complexes trans-3, 8, 10 and 13 have been structurally characterised.  相似文献   

14.
o-Phenylene-bridged trimethylcyclopentadienyl/amido titanium complexes [(η5-2,3,5-Me3C5H)C6H4NR-κN]TiCl2 (18, R = CH3; 19, R = CH2CH3; 20, R = CH2C(CH3)3; 21, R = CH2(C6H11)) and zirconium complexes {[(η5-2,3,5-Me3C5H)C6H4NR-κN]ZrCl-μCl}2 (22, R = CH3; 23, R = CH2CH3; 24, R = CH2C(CH3)3; 25, R = CH2(C6H11); 26, R = C6H11; 27, R = CH(CH2CH3)2) are prepared via a key step of the Suzuki-coupling reaction between 2-dihydroxyboryl-3-methyl-2-cyclopenten-1-one (2) and the corresponding bromoaniline compounds. The molecular structures of titanium complexes 18 and 19 and dinuclear zirconium complexes 24 and 26 were confirmed by X-ray crystallography. The Cp(centroid)-Ti-N and Cp(centroid)-Zr-N angles are smaller, respectively, than those observed for the Me2Si-bridged complex [Me2Si(η5-Me4C5)(NtBu)]TiCl2 and its Zr-analogue, indicating that the o-phenylene-bridged complexes are more constrained than the Me2Si-bridged complex. Titanium complex 19 exhibits comparable activity and comonomer incorporation to the CGC ([Me2Si(η5-Me4C5)(NtBu)]TiCl2) in ethylene/1-octene copolymerization. Complex 19 produces a higher molecular-weight polymer than CGC.  相似文献   

15.
The ligand exchange reaction of IMe-(CH2)2-PPh2 (IMe = 1-methyimidazol-2-ylidene) and the hexacarbonyl complex [{Fe2{μ-S(CH2)3S}(CO)6] (1) resulted in the formation of the chelated complex [{Fe2{μ-S(CH2)3S}(CO)4(IMe-(CH2)2-PPh2)] (2). The molecular structure of 2 was confirmed by spectroscopic and X-ray analyses. This complex catalyzes proton reduction. Low temperature NMR studies on the protonation of 2 revealed the formation of a terminal hydride intermediate.  相似文献   

16.
Syntheses of [Me3SbM(CO)5] [M = Cr (1), W (2)], [Me3BiM(CO)5] [M = Cr (3), W (4)], cis-[(Me3Sb)2Mo(CO)4] (5), [tBu3BiFe(CO)4] (6), crystal structures of 1-6 and DFT studies of 1-4 are reported.  相似文献   

17.
Abdeslam Abou  Miguel Yus 《Tetrahedron》2006,62(44):10417-10424
The reaction of 1,n-dichloroalkanes 3a (n=2-6) with an excess of lithium powder and a catalytic amount of 4,4′-di-tert-butylbiphenyl (DTBB; 2.5 mol %) in the presence of different carbonyl compounds [ButCHO, PhCHO, Et2CO, (CH2)4CO, (CH2)5CO, (CH2)7CO, (−)-menthone], in THF at −78 °C leads, after hydrolysis with water, to the expected 1,(n+2)-diols 4, yields being <25% for n=2, 3 and in the range of 45-79% for n=4-6. When the same protocol is applied to 1,n-bromochloroalkanes 3b and 1,n-dibromoalkanes 3c (n=2-6), diols 4 are obtained in general with lower yields.  相似文献   

18.
The new ferrocenyl substituted ditertiary phosphine {FcCH2N(CH2PPh2)CH2}2 [Fc = (η5-C5H4)Fe(η5-C5H5)] (1) was prepared, in 72% yield, by Mannich based condensation of the known bis secondary amine {FcCH2N(H)CH2}2 with 2 equiv. of Ph2PCH2OH in CH3OH. Phosphine 1 readily coordinates to various transition-metal centres including Mo0, RuII, RhI, PdII, PtII and AuI to afford the heterometallic complexes {RuCl2(p-cym)}2(1) (2), (AuCl)2(1) (3), cis-PtCl2(1) (4), cis-PdCl2(1) (5), cis-Mo(CO)4(1) (6), trans,trans-{Pd(CH3)Cl(1)}2 (7) and trans,trans-{Rh(CO)Cl(1)}2 (8). In complexes 2, 3, 7 and 8 ligand 1 displays a P,P′-bridging mode whilst for 4-6 a P,P′-chelating mode is observed. All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 1, 2 · 2CH2Cl2, 3 · CH2Cl2, 4 · CH2Cl2, 6 · 0.5CHCl3 and 8 have been elucidated by single crystal X-ray crystallography. Electrochemical measurements have been undertaken, and their redox chemistry discussed, on both noncomplexed ligand 1 and representative compounds containing this new ditertiary phosphine.  相似文献   

19.
The reaction pathway for the formation of the trimethylsiloxysilyllithium compounds (Me3SiO)RR′SiLi (2a: R = Et, 2b: R = iPr, 2c: R = 2,4,6-Me3C6H2 (Mes); 2a-c: R′ = Ph; 2d: R = R′ = Mes) starting from the conversion of the corresponding trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-d) in the presence of excess lithium in a mixture of THF/diethyl ether/n-pentane at −110 °C was investigated.The trimethylsiloxychlorosilanes (Me3SiO)RPhSiCl (1a: R = Et, 1b: R = iPr, 1c: R = Mes) react with lithium to give initially the trimethylsiloxysilyllithium compounds (Me3SiO)RPhSiLi (2a-c). These siloxysilyllithiums 2 couple partially with more trimethylsiloxychlorosilanes 1 to produce the siloxydisilanes (Me3SiO)RPhSi-SiPhR(OSiMe3) (Ia-c), and they undergo bimolecular self-condensation affording the trimethylsiloxydisilanyllithium compounds (Me3SiO)RPhSi-RPhSiLi (3a-c). The siloxydisilanes I are cleaved by excess of lithium to give the trimethylsiloxysilyllithiums (Me3SiO)RPhSiLi (2). In the case of the two trimethylsiloxydisilanyllithiums (Me3SiO)RPhSi-RPhSiLi (3a: R = Et, 3b: R = iPr) a reaction with more trimethylsiloxychlorosilanes (Me3SiO)RPhSiCl (1a, 1b) takes place under formation of siloxytrisilanes (Me3SiO)RPhSi-RPhSi-SiPhR(OSiMe3) (IIa: R = Et, IIb: R = iPr) which are cleaved by lithium to yield the trimethylsiloxysilyllithiums (Me3SiO)RPhSiLi (2a, 2b) and the trimethylsiloxydisilanyllithiums (Me3SiO)RPhSi-RPhSiLi (3a, 3b). The dimesityl-trimethylsiloxy-silyllithium (Me3SiO)Mes2SiLi (2d) was obtained directly by reaction of the trimethylsiloxychlorosilane (Me3SiO)Mes2SiCl (1d) and lithium without formation of the siloxydisilane intermediate. Both silyllithium compounds 2 and 3 were trapped with HMe2SiCl giving the products (Me3SiO)RR′Si-SiMe2H and (Me3SiO)RPhSi-RPhSi-SiMe2H.  相似文献   

20.
The lithiation of phthalan derivatives 4, 9 and 12 with an excess of lithium in the presence of a catalytic amount of 4,4′-di-tert-butylbiphenyl (DTBB) in THF at −78 °C gives dianionic intermediates 5, 10 and 13, respectively, which by reaction with different electrophiles [H2O, t-BuCHO, Me2CO, (EtO)2CO] at the same temperature, followed by hydrolysis, leads to regioselective functionalised naphthalenes 7, and biphenyls 11 and 14. The reductive opening takes place with high or total regioselectivity and can be explained considering the electron density in the dianion or in the radical anion, which are formed previous to the carbon-oxygen bond excision. The lithiation of the dihydrofurophthalan derivative 18 with the same reaction mixture but at higher temperature (0 °C) leads to intermediates 19 and 20, resulting from a single and a double reductive cleavage, respectively, which after addition of H2O and benzaldehyde as electrophiles gives a mixture of compounds 21 and 22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号