首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The static fluorescence quenching of pyrene by bromide, at the interface of mixed TTAC/TTAB discotic nematic lyotropic liquid crystals, allowed an estimation of the equilibrium constant for the exchange of chloride by bromide. The affinity of the interface for bromide is much higher than for chloride (K(Br-/Cl-) = 13.2). For a molecular level understanding of the experimental results of this and the preceding paper, 20 ns molecular dynamics (MD) simulations were calculated for samples with TTAB/TTAC molar percent ratios 100/0 (A), 50/50 (B) and 0/100 (C). The increment in the concentration of chloride induces a wider distribution of ammonium headgroups along the axis normal to the bilayer surface, increasing the width of the interface. The charge density profile of simulation B shows that the concentration of bromide is higher than the concentration of chloride in the vicinity the ammonium headgroups. The short range contribution to the electrostatic energy from the ammonium-ammonium repulsion is 291.7 kJ/mol for TTAC and 195.6 kJ/mol for TTAB, and the short range ammonium-halide interaction is -6166 kJ/mol for TTAC and -6607 kJ/mol for TTAB, from simulations A and C, respectively. These results are in agreement with a more neutralized TTAB interface. Consistently, the electric dipole moments of water are significantly more aligned with the larger electric field of the TTAB interface.  相似文献   

2.
The temperature-dependent self-assembly and the mixing behavior of symmetrical single-chain bolaamphiphiles with different polymethylene chain lengths and different headgroup structures were investigated in water by differential scanning calorimetry (DSC), cryo transmission electron microscopy (cryo-TEM), and small angle neutron scattering (SANS). The even-numbered polymethylene-1,omega-bis(phosphocholines) (PC-C n-PC) are known to form nanofibers composed of stretched molecules with an all- trans alkyl chain conformation (Drescher, S.; Meister, A.; Blume, A.; Karlsson, G.; Almgren, M.; Dobner, B. Chem.Eur. J. 2007, 13, 5300-5307). The odd-numbered analogues were synthesized to study a possible even-odd effect of these bolaamphiphiles during their aggregation in water. In addition to these bolaamphiphiles with phosphocholine headgroups, a new series of polymethylene-1,omega-bis(phosphodimethylethanolamines) (Me2PE-Cn-Me2PE) with smaller headgroup sizes was synthesized. These bolaamphiphiles show an additional fiber-fiber transition when the alkyl chain length exceeds 26 carbon atoms. The mixing behavior of both types of bolaamphiphiles indicates that differences in the alkyl chain length up to six carbon atoms are tolerated within the fiber structure. The mixing of two Me2PE-Cn-Me2PE or PC-Cn-PC type bolaamphiphiles with different alkyl chain lengths offers the possibility to adjust the temperature, where the cross-linking of the fibers is disrupted and where the fibers break apart. As a consequence, temperature switchable hydrogels are obtained that can be fine-tuned for drug delivery applications. The comparison with dotriacontane-1,32-diyl-bis[2-(methylammonio)-ethylphosphate] (MePE-C32-MePE), a new bolaamphiphile with even smaller phosphomonomethylammonio headgroups, illustrates the importance of the headgroup size for the aggregation behavior. This bolaamphiphile self-assembles exclusively into lamellar structures, and this aggregate type persists in mixtures with the fiber forming Me2PE-C32-Me2PE.  相似文献   

3.
In this study, we investigated the dynamics of a membrane interface of liposomes prepared by eight zwitterionic phosphatidylcholines in terms of their headgroup mobility, with spectroscopic methods such as dielectric dispersion analysis (DDA), fluorescence spectroscopy. The DDA measurement is based on the response of the permanent dipole moment to a driving electric field and could give the information on the axial rotational Brownian motion of a headgroup with the permanent dipole moment. This motion depended on kinds of phospholipids, the diameter of the liposomes, and the temperature. The activation energy required to overcome the intermolecular force between headgroups of phospholipids depended on the strength of the interaction between headgroups such as hydrogen bonds and/or dipole-dipole interaction. Hydration at the phosphorous group of phospholipid and the molecular order of lipid membrane impaired the interaction between headgroups. Furthermore, the hydrophobicity of membrane surface increased parallel to the increase in headgroup mobility. It is, therefore, concluded that hydration of headgroup promoted its mobility to make the membrane surface hydrophobic. The lipid membrane in liquid crystalline phase or the lipid membrane with the larger curvature was more hydrophobic.  相似文献   

4.
Abstract

The aggregation and surface activity of N-butyl-2-pyrrolidone (BP) in water is investigated using surface tension, solubilization, fluorescence and NMR methods. The micelle point is high (?1.0 M) as expected for the butyl chain length, and the aggregation number is approximately 5, with pre-association below the c.m.c. Despite the low aggregation number, the fluorescence data indicate that the interior of the aggregate is similar to pure liquid BP. The adsorption of BP at the solution/air interface goes to a maxmum near the c.m.c, corresponding to an area of 45 ± 1 Å2/molecule.  相似文献   

5.
Counterion and composition effects on the size and interface dynamics of discotic nematic lyotropic liquid crystals made of tetradecyltrimethylammonium halide (TTAX)-decanol (DeOH)-water-NaX, with X = Cl(-) and Br(-), were investigated using NMR and fluorescence spectroscopies. The dynamics of the interface was examined by measuring deuterium quadrupole splittings from HDO (0.1% D(2)O in H(2)O) and 1,1-dideuterodecanol (20% 1,1-dideuterodecanol in DeOH) in 27 samples of each liquid crystal. Aggregation numbers, N(D), from 15 samples of each mesophase were obtained using the fluorescence of pyrene quenched by hexadecylpyridinium chloride. N(D) of TTAB and TTAC are about 230+/-30 and 300+/-20, respectively. N(D) of TTAC increases with increasing concentration of all mesophase components, whereas TTAB shows no correlation between size and composition. The dimension of these aggregates prevents the occurrence of undulations, previously observed in lamellar phases. The quadrupole splitting of decanol-d(2) in TTAC is about 5 kHz smaller than in TTAB, and the splitting of HDO is observed only in TTAB. All results are consistent with a more dynamic TTAC interface. The TTAC aggregate should be more dissociated from counterions and the excess ammonium-ammonium electrostatic repulsions contribute to increase the mobility of the interface components.  相似文献   

6.
The dynamics of water near the polar headgroups of surfactants in a monolayer adsorbed at the air/water interface is likely to play a decisive role in determining the physical behavior of such organized assemblies. We have carried out an atomistic molecular dynamics (MD) simulation of a monolayer of the anionic surfactant sodium bis(2-ethyl-1-hexyl) sulfosuccinate (aerosol-OT or AOT) adsorbed at the air/water interface. The simulation is performed at room temperature with a surface coverage of that at the critical micelle concentration (78 Angstrom(2)/molecule). Detailed analyses of the lifetime dynamics of surfactant-water (SW) and water-water (WW) hydrogen bonds at the interface have been carried out. The nonexponential hydrogen bond lifetime correlation functions have been analyzed by using the formalism of Luzar and Chandler, which allowed identification of the bound states at the interface and quantification of the dynamic equilibrium between bound and quasi-free water molecules, in terms of time-dependent relaxation rates. It is observed that the water molecules present in the first hydration layer form strong hydrogen bonds with the surfactant headgroups and hence have longer lifetimes. Importantly, it is found that the overall relaxation of the SW hydrogen bonds is faster for those water molecules which form two hydrogen bonds with the surfactant headgroups than those forming one such hydrogen bond. Equally interestingly, it is further noticed that water molecules beyond the first hydration layer form weaker hydrogen bonds than pure bulk water.  相似文献   

7.
Abstract— The absorption spectra of the un-ionized and ionized forms of 4-heptadecyl-7-hydroxycoumarin (HHC) in aqueous self-assembled surfactant solution have been investigated. From a comparison with the absorption spectra of 7-hydroxycoumarin, 7-hydroxy-4-methylcoumarin (MHC) and HHC in neat organic solvents and organic solvent/water mixtures it is shown that the 7-hydroxycoumarin chromophore of HHC in self-assembled surfactant solution resides, on average, in an interfacial microenvironment which has a lower effective dielectric constant than that of the bulk aqueous solution. The absorption spectrum of the ionized form of HHC in aggregates of self-assembled surfactant molecules with cationic quaternary ammonium headgroups is found to be consistent with there being specific molecular interaction between the anionic chromophore and the quaternary ammonium headgroup. pH titrations performed with MHC in pure water and in four molar aqueous solutions of sodium chloride and tetra-methylammonium chloride indicate that the acid-base dissociation of HHC in charged micelles and vesicles should not be substantially influenced by any interfacial salt-effects, and that the acid-base dissociation of HHC in cationic micelles and vesicles with quaternary ammonium headgroups should not be markedly affected by the specific molecular interaction that exists. Estimates of the electrostatic surface potentials of a number of self-assembled surfactant aggregates are made by utilising the acid-base dissociation of HHC and assuming that the nonionic micelles of n -dodecyl octaoxyethylene glycol monoether (C12E8) can serve as a reference state of zero surface potential. The validity of this assumption in relation to both micelles and vesicles is discussed in detail.  相似文献   

8.
Atomistic molecular dynamics (MD) simulations have been carried out at 30 degrees C on a fully hydrated liquid crystalline lamellar phase of dimyrystoylphosphatidylcholine (DMPC) lipid bilayer with embedded ethanol molecules at 1:1 composition, as well as on the pure bilayer phase. The ethanol molecules are found to exhibit a preference to occupy regions near the upper part of the lipid acyl chains and the phosphocholine headgroups. The calculations revealed that the phosphocholine headgroup dipoles (P- --> N+) of the lipids prefer to orient more toward the aqueous layer in the presence of ethanol. It is noticed that the ethanol molecules modify the dynamic properties of both lipids as well as the water molecules in the hydration layer of the lipid headgroups. Both the in-plane "rattling" and out-of-plane "protrusion" motions of the lipids have been found to increase in the presence of ethanol. Most importantly, it is observed that the water molecules within the hydration layer of the lipid headgroups exhibit faster translational and rotational motions in the presence of ethanol. This arises due to faster dynamics of hydrogen bonds between lipid headgroups and water in the presence of ethanol.  相似文献   

9.
研究了3种不同结构的水溶性阳离子表面活性剂对纳米二氧化硅颗粒的原位表面活性化作用, 它们分别是单头单尾的十六烷基三甲基溴化铵(CTAB)、单头双尾的双十二烷基二甲基溴化铵(di-C12DMAB)和双头双尾的Gemini型阳离子三亚甲基-二(十四酰氧乙基溴化铵)(II-14-3), 并通过测定Zeta电位、吸附等温线及接触角等参数对相关机理进行了阐述. 结果表明, 阳离子表面活性剂吸附到颗粒/水界面形成以疏水基朝向水的单分子层, 从而增强了颗粒表面的疏水性是原位表面活性化的基础. 通过吸附CTAB和II-14-3, 颗粒的疏水性适当增强, 能吸附到正辛烷/水界面稳定O/W(1)型乳状液; 而通过吸附di-C12DMAB所形成的单分子层更加致密, 颗粒的疏水性进一步增强, 进而使乳状液从O/W(1)型转变为W/O型; 当表面活性剂浓度较高时, 由于链-链相互作用, 表面活性剂分子将在颗粒/水界面形成双层吸附, 使颗粒表面变得亲水而失去活性, 但此时体系中游离表面活性剂的浓度已增加到足以单独稳定O/W(2)型乳状液的程度. 因此当采用纳米二氧化硅和di-C12DMAB的混合物作乳化剂时, 通过增加di-C12DMAB的浓度即可诱导乳状液发生O/W(1)→W/O→O/W(2)双重相转变.  相似文献   

10.
Membrane-forming properties of five new gemini cationic lipids possessing an aromatic backbone between the headgroup and hydrocarbon chains have been presented. These gemini lipids differ by the number of polymethylene units [-(CH(2))(n)-] between the cationic ammonium -[N(+)(CH(3))(2)]- headgroups. The membrane-forming properties of these gemini lipids have been studied in detail by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), high-sensitivity differential scanning calorimetry (DSC), Paldan fluorescence studies, and UV-vis absorption spectroscopy. The electron micrographs and dynamic light scattering of their aqueous suspensions confirmed the formation of vesicular-type aggregates. The vesicle sizes and morphologies were found to depend strongly on the n-value of the spacer. Information on the thermotropic and hydration properties of the resulting vesicles was obtained from differential scanning calorimetry and temperature-dependent Paldan fluorescence studies, respectively. Examination of the thermotropic phase-transition properties of the lipid aggregates revealed interesting features of these lipids, which were found to depend on the length of the spacer chain. Paldan fluorescence studies indicate that the membranes of the gemini lipids are less hydrated as compared to that of the monomeric counterpart in their solid-gel state. In contrast in their fluid, liquid-crystalline phase, the hydration of gemini lipid aggregates was found to depend strongly on the length of the spacer. UV-vis absorption studies suggest an apparent H-type aggregate formation in the gemini lipid membranes in the gel states. In fluid state of the lipid membranes, H-aggregate formation was found to be enhanced depending on the length of the spacer. Such an understanding of the properties upon membrane formation from this new class of gemini lipids will be useful for further development of related gene delivery systems.  相似文献   

11.
The structure of an aqueous 1-n-decyl-3-methylimidazolium bromide solution and its vapor-liquid interface has been studied using molecular dynamics (MD) simulations. Starting from an isotropic solution, spontaneous self-assembly of cations into small micellar aggregates has been observed. The decyl chains are buried inside the micelle to avoid unfavorable interactions with water, leaving the polar headgroups exposed to water. The cation aggregation numbers, ranging from 15 to 24 compare favorably with experimental estimates. Results are presented for the organization of solvent around the cations. The structure of the aggregates as determined from the present MD simulations does not support the staircase model proposed on the basis of nuclear magnetic resonance studies on similar aqueous ionic-liquid solutions. The distribution of ions in bulk solutions and at an air/water interface is also discussed.  相似文献   

12.
We use simulations to predict the stability and mechanical properties of two amphiphilic bilayer membranes. We carry out atomistic MD simulations and investigate whether it is possible to use an existing coarse-grained (CG) surfactant model to map the membrane properties. We find that certain membranes can be represented well by the CG model, whereas others cannot. Atomistic MD simulations of the erucate membrane yield a headgroup area per surfactant a(0) of 0.26 nm(2), an elastic modulus K(A) of 1.7 N/m, and a bending rigidity kappa of 5 k(B)T. We find that the CG model, with the right choice for the size and potential well depth of the head, correctly reproduces a(0), kappa, as well as the fluctuation spectrum over the whole range of q values. Atomistic MD simulations of EHAC, on the other hand, suggest that this membrane is unstable. This is indicated by the fact that kappa is of the order of k(B)T, which means that the interface is extremely flexible and diffuse, and K(A) is close to zero, which means that the surface tension is zero. We argue that the CG model can be used if the headgroups are uncharged, dipolar, or effectively dipolar due to headgroup charge screening induced by counterion condensation.  相似文献   

13.
With the aim of studying the effect of urea on micellar properties of aqueous solutions of sodium dodecylsulfate (SDS), steadystate fluorescence experiments were carried out with different luminescence probes incorporated into the micellar phase. The increase of critical micelle concentration (CMC) of the surfactant with urea addition was followed by changes in the relative intensities of the vibrational fine structure of the pyrene fluorescence spectra. Micellar aggregation numbers were obtained from the analysis of fluorescence quenching data using ruthenium tris(bipyridyl) chloride and 9-mehylanthracene as a donorquencher pair. It was found that the decrease in the aggregation number is mainly controlled by rise in the surface area per headgroup of the surfactant. From fluorescence measurements, using several ionic probes (8-anilino-1-naphthalen-sulfonic acid, rhodamine B, and auramine O), it was found that urea decreases the polarity and increases the microviscosity of the micellar interface. These effects, which are dependent on the concentration of urea, can be explained according to a direct interaction of urea at the micellar surface.  相似文献   

14.
Molecular-dynamics simulations were performed to model the effect of added salt ions on the liquid-liquid interface in a partially miscible system. Simulations of the interface between saturated phases of a model 1-hexanol+water system show a bilayer structure of 1-hexanol molecules at the interface with -OH heads of the first layer directed into the water phase and the opposite orientation for the second layer. The alignment of the polar -OH groups at the interface stabilizes a charge separation of sodium and chloride ions when salt is introduced into the aqueous phase, producing an electrical double layer. Chloride ions aggregate nearer the interface and sodium ions move toward the bulk water phase, consistent with the explanation that the -OH alignment presents a region of partial positive charges to which the hydrated chloride atoms are attracted. Ions near the interface were found to be less solvated than those in the bulk phase. An electric field was also applied to drive ions through the interface. Ions crossing the interface tended to shed water molecules as they entered the hexanol bilayer, leaving a trail of water molecules. Stabilization and facilitated transport of the ion by interactions with the second layer of hexanol molecules appeared to be an important step in the mechanism of sodium ion transport.  相似文献   

15.
Interactions between salt ions and lipid components of biological membranes are essential for the structure, stability, and functions of the membranes. The specific ionic composition of aqueous buffers inside and outside of the cell is known to differ considerably. To model such a situation we perform atomistic molecular-dynamics (MD) simulations of a single-component phosphatidylcholine lipid bilayer which separates two aqueous reservoirs with and without NaCl salt. To implement the difference in electrolyte composition near two membrane sides, a double bilayer setup (i.e., two bilayers in a simulation box) is employed. It turns out that monovalent salt, being in contact with one leaflet only, induces a pronounced asymmetry in the structural, electrostatic, and dynamical properties of bilayer leaflets after 50 ns of MD simulations. Binding of sodium ions to the carbonyl region of the leaflet which is in contact with salt results in the formation of "Na-lipids" complexes and, correspondingly, reduces mobility of lipids of this leaflet. In turn, attractive interactions of chloride ions (mainly located in the aqueous phase close to the water-lipid interface) with choline lipid groups lead to a substantial (more vertical) reorientation of postphatidylcholine headgroups of the leaflet adjoined to salt. The difference in headgroup orientation on two sides of a bilayer, being coupled with salt-induced reorientation of water dipoles, leads to a notable asymmetry in the charge-density profiles and electrostatic potentials of bilayer constitutes of the two leaflets. Although the overall charge density of the bilayer is found to be almost insensitive to the presence of salt, a slight asymmetry in the charge distribution between the two bilayer leaflets results in a nonzero potential difference of about 85 mV between the two water phases. Thus, a transmembrane potential of the order of the membrane potential in a cell can arise without ionic charge imbalance between two aqueous compartments.  相似文献   

16.
All-atom molecular dynamics simulation results regarding aqueous sodium dodecyl sulfate (SDS) solutions have been presented. Both salt-free solutions with different SDS concentrations and those containing calcium chloride additives have been studied. The simulation has shown that surface-active SDS ions form stable premicellar aggregates. The obtained molecular dynamics trajectories have been used to describe both the kinetic and structural properties of solutions containing SDS molecular aggregates and the properties of individual aggregates. Aggregation kinetics has been investigated, and the characteristic sizes of the aggregates have been calculated by different methods. It has been found that the size of a premicellar aggregate with aggregation number n = 16 in a salt-free solution virtually does not depend on surfactant concentration. Radial distribution functions (RDFs) of hydrogen and oxygen atoms of water molecules relative to the center of mass of an aggregate have no local maxima near the aggregate surface; i.e., the surface is incompletely wetted with water. Corresponding RDFs of carbon atoms have one, two or three maxima depending on the surfactant concentration and the serial number of a carbon atom in the hydrocarbon radical of the surface- active ion. The study of the potentials of mean force for the interaction of sodium and calcium ions with an aggregate having aggregation number n = 32 shows that only calcium ions can be strongly bound to such an aggregate.  相似文献   

17.
New series of ester functionalized quaternary ammonium gemini surfactants having different ethylene oxide units as spacer have been synthesized and investigated for their aggregation behavior and thermodynamic properties of micellization by surface tension, conductivity, and fluorescence methods. The critical micelle concentration (cmc) of these gemini surfactants increases with the increase in the length of polar hydrophilic ethylene oxide spacer. The micellization process has been found to be entropy-driven and dependent on both the tendency of the hydrophobic group of the surfactants to transfer from aqueous environment to interior of micelle as well as the rearrangement of flexible ester-linked ethylene oxide units (hydrophilic spacer) into aqueous phase. The polar ester functional groups and pairs of nonbonding electrons on oxygen atom of ethylene oxide spacer form hydrogen bonding with water molecules enhancing their solubility in aqueous system.  相似文献   

18.
A variety of bolalipids with a single long alkyl chain and two identical headgroups self-assemble in aqueous solutions into helical entangled nanofibers leading to the formation of a hydrogel. An increase in temperature usually leads to the break-up of the fiber structure into micellar aggregates. In this paper the question is addressed whether bolalipids of different lengths or different headgroup structures can form mixed fibers. Also, the stability of the fiber aggregation of bolalipids in mixtures with phospholipids forming lamellar bilayers is discussed. Here, the question whether single-chain bolalipids can be incorporated into phospholipid bilayers to stabilize bilayer membranes is important, as possibly lipid vesicles used for drug delivery can be improved. Finally, the stability of the fiber aggregate against solubilisation by common surfactants was studied. The paper addresses the question which type of aggregate structure dominates the self-assembly of bipolar and monopolar amphiphiles in aqueous suspension.  相似文献   

19.
The aggregation behavior of cationic copolymer methacryloxyethyl trimethyl ammonium chloride‐butyl acrylate‐acrylamide (MTAC‐BA‐AM) was investigated via surface property and fluorescence spectroscopy measurements, as well as Mesodyn simulation, etc. The experimental results indicate that MTAC‐BA‐AM has the ability for decreasing surface tension of water and there are two break points in the surface tension isotherm; and its surface dilational viscoelasticity and apparent viscosity in aqueous solution depend upon aggregate structure. The Mesodyn simulation results show that spherical, cylindrical aggregates, and network structures form in aqueous solution with the concentration increasing. The aggregation process is driven by enthalpy and can be divided into two stages. The first stage is controlled by diffusion, while the second one is controlled by hydrophobic interaction.  相似文献   

20.
The title cationic surfactants have been synthesized by reaction of carboxylic acids with N, N-dimethylethylenediamine to give an intermediate amidoamine. The latter was quaternized with methyl iodide; the product was transformed into the corresponding chloride surfactant by ion-exchange on a macroporous resin. Adsorption and aggregation of these surfactants in H 2O have been studied by surface tension measurement. Additionally, solution conductivity, electromotive force (H 2O), and Fourier transform IR spectroscopy (D 2O) have been employed to investigate micelle formation. Increasing the length of R resulted in the following changes: an increase in the micelle aggregation number; a decrease in the minimum area per surfactant at the solution/air interface, the critical micelle concentration, and the degree of counterion dissociation. Gibbs free energies of adsorption at the solution/air interface and micelle formation in water were calculated and compared to those of alkyltrimethylammonium chlorides. The contribution to these free energies from surfactant methylene groups (in the hydrophobic tail) and the head group was calculated. The former are similar to those of other cationic surfactants. The corresponding free-energy contributions of head groups are smaller (i.e., more negative), indicating that the transfer of this group from bulk water to the interface (for adsorption) and/or to the micelle (aggregate formation) is more favorable. This is attributed to intermolecular hydrogen bonding of monomers at the interface, and/or in the aggregate, via the amide group, in agreement with our Fourier transform IR data. Our results are compatible with a micellar interface closer to the amide nitrogen than to the quaternary ammonium ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号