首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用原位聚合制备核-壳结构聚合物纳米微球和空心球的新方法, 利用甲基丙烯酸2-羟丙酯(HPMA)和乙酸乙烯酯(VAc)两种单体, 在类似的反应条件下, 成功地制备了以聚(ε-己内酯)(PCL)为核, 分别以交联PHPMA和PVAc为壳的纳米微球; 将微球的核酶解后, 分别得到了对应的交联PMAA空心球和交联PVA空心球. 结果表明, 原位聚合制备核-壳结构聚合物微球的新方法具有一定的普适性, 适用于单体可溶于水而生成的聚合物不溶于水的体系.  相似文献   

2.
This article briefly describes some new approaches to stimuli-sensitive polymeric micelles and hollow spheres, which were developed in the authors’ laboratory in recent years. (1) Self-assembly of component polymers to non-covalently connected micelles (NCCM) driven by specific interactions. For example, in water, PCL and PAA formed core-shell nanospheres due to interpolymer hydrogen bonding. After crosslinking the PAA shell and removing the PCL core, “nanocages” made of PAA network were obtained. This hollow structure shows perfect reversible size-pH dependence. (2) Simultaneous in-situ polymerization of monomers and self-assembly of the polymers. In this approach, PNIPAM network was formed by radical polymerization covering PCL particles. Hollow spheres of PNIPAM network were then obtained by biodegradation of the PCL core. Both the core-shell spheres and hollow spheres show reversible size dependence on temperature change because of the phase transition of PNIPAM around 32°C. (3) Complexation-induced micellization and transition between the micelles and hollow spheres. Graft copolymers of hydroxylethyl cellulose (HEC) and PAA were prepared by free radical polymerization. The copolymers showed pH dependent micellization, i.e., micelles formed when pH of the graft copolymer solution decreased to around 3. The micellar structure could be locked by crosslinking the PAA grafts. The resultant cross-linked micelles undergo pH-dependent transition between the micelles and hollow spheres, which accompanies a remarkable particle size change. Both the micellization and the structure transition were found to be reversible and associated with H-bonding complexation between the main chain and grafts. __________ Translated from Acta Polymerica Sinica, 2005, 650(5) (in Chinese)  相似文献   

3.
结合大分子自组装和原位自由基聚合方法,采用油溶性引发剂偶氮二异丁腈(AIBN),在聚(ε-已内酯)(PCL)纳米粒子表面引发聚合单体N-异丙基丙烯酰胺(NIPAM)和交联剂亚甲基双(丙烯酰胺)(MBA),制备得到了核-壳结构的PCL/PNIPAM聚合物纳米微球.系统研究了单体和交联剂用量、壳层目标交联度、初始PCL/DMF溶液的浓度及引发剂AIBN含量4个反应参数对核-壳结构PCL/PNIPAM纳米微球的PNIPAM壳层得率、微球尺寸、温敏性能及电镜形貌的影响.结果表明,在制备核-壳结构PCL/PNIPAM纳米微球的反应过程中,PCL粒子表面的聚合和水中的聚合二者之间相互竞争.适当增加引发剂AIBN的添加量,有利于制备得到核/壳比例可控的PCL/PNIPAM纳米微球;交联剂MBA较高的反应活性导致形成了非均匀交联的PNIPAM壳层.  相似文献   

4.
Summary: This work reports a new type of poly(ε‐caprolactone) (PCL) robust hollow sphere with controllable biodegradability, produced by grafting PCL shells from the surface of silica sphere cores and removing the template cores. Bis(ε‐caprolactone‐4‐yl) (BCY) composed of two ε‐caprolactone molecules was used as the crosslinker, which not only greatly strengthened the PCL hollow spheres but also brought hardly any non‐biodegradable component into the system. Solubility experiments and biodegradation tests show that the crosslinked PCL hollow spheres were robust both in water and acetone, and were completely biodegradable with characteristics of controllable biodegradability according to the content of the BCY. The Rhodamine release test indicated that the release rate of encapsulated drugs in the PCL hollow spheres was controlled by diffusion and the biodegradability of the PCL molecules, and the latter mechanism will dominate when more enzymes are involved.

Reaction scheme for synthesis of linear and crosslinked hollow poly(ε‐caprolactone) spheres.  相似文献   


5.
ZnS hollow nanospheres with holes were prepared by reacting ZnSO4 with H2S, the sulfide source formed in the reaction of CS2 with ethylenediamine, 1,3-propylenediamine, butylamine or 2-(2-aminoethylamino) ethanol, which also acted as a template agent, at 50°C under agitation. The shape, particle size of about 100–850 nm and hole size of about 150–600 nm of ZnS hollow nanospheres with holes were shown by SEM and TEM images. These ZnS nanospheres with β cubic ZnS phase and composed of 2–5 nm nanocrystals were characterized by XRD and HRTEM. The blue shift of maximum absorption in UV-vis displayed the effect of quantum size. The two amino groups of amine templates reacted favorably with Zn2+ to form uniform and relatively smooth ZnS nanospheres with holes, while hydroxyethyl played a disadvantageous role. A reasonable mechanism of hole formation by H2S rushing out is suggested. __________ Translated from Journal of Jinan University (Natural Science), 2007, 28(1): 92–95 [译自: 暨南大学学报(自然科学版)]  相似文献   

6.
A novel strategy was developed for tailoring of SiO2 and TiO2 nanoparticle surfaces with poly(ε-caprolactone) (PCL). Thus, a self-curable polyester, poly(2-hydroxypropylene maleate) was adsorbed on the nanoparticle surfaces and heated to 180 °C to give a cross-linked polyester layer with residual hydroxyalkyl groups on their surfaces. Surface-initiated polymerization of ε-caprolactone from hydroxyalkyl groups on the surfaces yielded core-shell nanoparticles with cross-linked core and PCL shells (22.2–71.4%). The organic shell layers around the nanoparticle cores were evidenced by transmission electron microscopy, dynamic light scattering, and thermogravimetric analyses techniques. The core-shell nanoparticles were then employed in preparing the stable and the homogenous dispersions with poly(methyl methacrylate-stat-butyl acrylate) solutions. An application of the solutions onto glass substrates yielded uniform and nearly transparent free standing films (40–60 μm) with good homogeneity as inferred from scanning electron microscopy pictures.  相似文献   

7.
The ring opening polymerization of ε-caprolactone (CL) was initiated by glycol and yttrium tri(2,6-di-tert-butyl-4-methylphenolate)s (Y(OAr)3), preparing dihydroxy-capped poly (ε-caprolactone) (PCL) with controllable molecular weight. 1H NMR and SEC analyses indicate that two kinds of active species and corresponding PCL with different structures exist in the system. Increasing the ratio of glycol to Y(OAr)3 benefits the formation of monofunctional active species. However, poly(ethylene glycol) (PEG)/Y(OAr)3 system only contains sole bifunctional active species to synthesize copolymer of CL with PEG (poly(CL-b-PEG-b-CL)). Dihydroxycapped PCL as macroinitiator can further initiate the polymerization of 2,2-dimethyltrimethylene carbonate (DTC). Thus, triblock copolymer of CL with DTC (poly(DTC-b-CL-b-DTC)) has been prepared.  相似文献   

8.
阎虎生 《高分子科学》2013,31(2):294-301
Single-hole hollow polymer nanospheres were fabricated by raspberry-like template method using "graft-from" strategy through atom transfer radical polymerization (ATRP). Nanometer-sized silica spheres were covalently attached onto the surfaces of micrometer-sized silica spheres. Crosslinked polymer shells on the nano-sized spheres outside the attached area were formed by "graft-from" strategy through ATRP. After removal of the silica cores, single-hole hollow crosslinked polymer nanospheres were obtained. In this strategy, most of ATRP monomers may be used and thus many functional groups can be easily incorporated into the single-hole hollow crosslinked polymer nanospheres.  相似文献   

9.
概述了本研究组近年来发展的几种制备环境敏感的聚合物纳米胶束和空心球的新方法,包括通过聚合物间的氢键相互作用构建“非共价键合胶束”的自组装方法,将聚合物自组装与单体的原位聚合相结合的方法以及利用接枝共聚物中的主链和支链间的络合作用诱导胶束化和胶束与空心球的可逆转化等.讨论了这些聚合物纳米微球和空心球对温度、pH及离子强度等的响应特性.  相似文献   

10.
均匀的空心纳米及微米球因具有可裁剪结构及良好的光学性能和表面性能,而具有非常广泛的应用前景,空心胶囊是一类重要的材料,它是通过不同的化学和物理方法,直接除去壳-核粒子的内核而获得的,目前主要是通过控制表面沉积。或利用静电相互作用层层组装。制备空心胶囊,但前者易于产生独立的无机粒子沉淀,后者的步骤太过繁琐。  相似文献   

11.
Novel structural microspheres of the Janus type, with microphase‐separated polystyrene (PS) and poly(tert‐butyl methacrylate) (PBMA) shells and crosslinked poly(2‐vinyl pyridine) (PVP) cores, were synthesized with the crosslinking of PVP spherical domains in poly(styrene‐block‐2‐vinyl pyridine‐blocktert‐butyl methacrylate) ABC triblock terpolymer film with PS/PBMA lamellae–PVP spherical structures. For the formation of lamellae‐sphere structures, toluene, which was a selective solvent for the ABC triblock terpolymer, was used. With the crosslinking of PVP spheres in the microphase‐separated film with 1,4‐diiodobutane gas, the microphase structure of the terpolymer was fixed, and microspheres composed of microphase‐separated PS and PBMA shells and P2VP cores were obtained. The size distribution of the purified microspheres was narrow. The characteristics of the microspheres and their aggregation behaviors in selective solvents were investigated by transmission electron microscopy and light scattering methods. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2091–2097, 2000  相似文献   

12.
A one-step sequential method for preparing AgCl@polypyrrole-chitosan core-shell nanoparticles and subsequently the formation of polypyrrole-chitosan hollow nanospheres is reported. The formation of the core and the shell is performed in one reaction medium almost simultaneously. Transmission electron microscopy (TEM) images show the presence of core-shell nanoparticles and hollow nanospheres. Ultraviolet-visible (UV-vis) studies reveal that AgCl was formed first followed by polypyrrole. X-ray diffration (XRD) and UV-vis studies show that AgCl was present in the core-shell nanoparticles and could be removed completely from the core.  相似文献   

13.
The preparation of CdSe nanospheres (ns-CdSe) and their application as electron acceptor in conjugated polymer photovoltaic devices are reported. ns-CdSe with diameters of 5 nm were prepared through an organometallic method. The transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectra indicate that the CdSe nanocrystals (NCs) are monodispersed nanospheres with the first exciton absorption peak at around 625 nm and the emission peak at around 652 nm. The PL spectra of the ns-CdSe/polymer composite films show that the PL of the conjugated polymers is effectively quenched upon the addition of ns-CdSe. Photovoltaic devices were fabricated from the composites of ns-CdSe and poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) or poly(3-hexylthiophene) (P3HT). Under AM1.5 illumination (100 mW/cm2), the short circuit current (I SC), open circuit voltage (V OC), fill factor (FF) and energy conversion efficiency (η) reached 1.56 mA/cm2, 0.75 V, 34.5% and 0.40%, respectively for device from the ns-CdSe/MEH-PPV (15: 1 by weight) and 1.93 mA/cm2, 0.65 V, 38.4% and 0.48%, respectively for device from the ns-CdSe/P3HT (10: 1 by weight). __________ Translated from Chemical Journal of Chinese Universities, 2007, 28(3): 596–599 [译自: 高等学校化学学报]  相似文献   

14.
Polymeric nanospheres consisting of poly(methyl methacrylate) (PMMA) cores and poly(ethylene glycol) (PEG) branches on their surfaces were prepared by free radical copolymerization of methyl methacrylate (MMA) with PEG macromonomers in ethanol/water mixed solvents. PEG macromonomers having a methacryloyl (MMA‐PEG) and p‐vinylbenzyl (St‐PEG) end group were used. It has become clear that the obtained polymer dispersions form three kinds of states, particle dispersion (milky solution), clear solution, and gel/precipitation. It was found that the reaction parameters such as MMA concentration, molecular weight, and concentration of PEG macromonomers, and water content can affect nanosphere formation in a copolymerization system. The water volume fraction of mixed ethanol/water solvents affected the particle size of the nanospheres. These differences in the formation of nanospheres were due to the solvophilic/solvophobic balance between the copolymers and solvents during the self‐assembling process of the copolymers. The sizes of nanospheres can be controlled by varying concentration of PEG macromonomer and water content in solvents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1811–1817, 2000  相似文献   

15.
NiO solid/hollow spheres with diameters about 100 nm have been successfully synthesized through thermal decomposition of nickel acetate in ethylene glycol at 200 °C. These spheres are composed of nanosheets about 3-5 nm thick. Introducing poly(vinyl pyrrolidone) (PVP) surfactant to reaction system can effectively control the products’ morphology. By adjusting the quantity of PVP, we accomplish surface areas-tunable NiO assembled spheres from ∼70 to ∼200 m2 g−1. Electrochemical tests show that NiO hollow spheres deliver a large discharge capacity of 823 mA h g−1. Furthermore, these hollow spheres also display a slow capacity-fading rate. A series of contrastive experiments demonstrate that the surface area of NiO assembled spheres has a noticeable influence on their discharge capacity.  相似文献   

16.
Graft copolymerization of methyl methacrylate (MMA) on chlorine containing polymers [e.g. trichloroacetates of poly(vinyl alcohol), microcrystalline cellulose or starch and chlorinated atactic polypropylene] in the presence of vanadium(III) chloride (VCl3) was carried out in dimethylformamide at 70°. The grafting n-butyl methacrylate or ethyl acrylate on poly(vinyl trichloroacetate) displayed high efficiency; in the first system, however, crosslinked polymer fractions were formed. The number-average molecular weight of grafted branches was determined. Chromium(II) acetate and titanium(III) chloride are less efficient initiators for polymerization of methacrylates in the presence of trichloroacetates.  相似文献   

17.
The method of thermally stimulated current (TSC) has been used to study the low-temperature dielectric β relaxations of several polymers including especially poly(vinyl chloride), poly(vinyl acetate), polyamide 6, 6,6,poly(t-butyl acrylate), poly(methyl methacrylate), poly(ethyl methacrylate), poly(phenyl methacrylate), and poly(t-butyl methacrylate). The distribution characteristics of the relaxation processes have been determined from the corresponding TSC peaks by a fractional polarization technique which consists of applying the electric field in several discrete steps during a slow cooling. Several common features have been found in all the polymers investigated: the β peaks are characterized by a distribution of relaxation times resulting from a distribution in activation energy and this distribution is quasisymmetrical and continuous. These facts are in agreement with the hypothesis of a relaxation involving local motions of small polar groups undergoing various interactions with the environment. Some discrepancy remains, however, between our calculated values of the mean activation energy and those obtained from the dielectric loss.  相似文献   

18.
Microgel-like poly(allyl methacrylate) (PAMA nanosphere) was prepared by the emulsion polymerization of AMA as the reactive crosslinked polymer nanosphere with abundant pendant allyl groups. The terpolymerization of PAMA nanosphere with allyl benzoate (ABz) and vinyl benzoate (VBz) was conducted in bulk using benzoyl peroxide as initiator at 80 °C. The gelation depended on the feed ABz/VBz molar ratio since the molecular weights of resulting poly(ABz-co-VBz)s that act as the bridges increased with an increase in the mole fraction of VBz in the feed monomer. Beyond the gel point, the sol was rapidly incorporated into the gel and the increasing tendency of the gel fraction became steeper from 70 to 95 mol% of VBz as a reflection of increased chain length of bridge between PAMA nanospheres. Moreover, the swelling ratio became lower with increasing the mole percentage of VBz in the feed monomer. These results would support the preferential incorporation of PAMA nanosphere into the gel and the longer bridge can capture more nanospheres to give a much shrunken gel.  相似文献   

19.
The polymerization of vinyl monomer initiated by an aqueous solution of poly(vinylbenzyltrimethyl)ammonium chloride (Q-PVBACI) was carried out at 85°C. Styrene, p-chlorostyrene, methyl methacrylate, and i-butyl methacrylate were polymerized, whereas acrylonitrile and vinyl acetate were not. The effects of the amounts of vinyl monomer, Q-PVBACI, and water on the conversion of vinyl monomer were studied. The overall activation energy in the polymerization of styrene was estimated as 79.1 kJ mol?1. The polymerization proceeded through a radical mechanism. The selectivity of vinyl monomer was discussed by “a concept of hard and soft hydrophobic areas and monomers.”  相似文献   

20.
Gold nanoparticles (Au-NPs) are encased in aqueous nanospheres of alpha-helical poly(gamma-benzyl L-glutamate)s (PBLG, number average degree of polymerization: n = 32), with spatially controlled self-assembly structures of solid core-shell nanospheres or double-layered hollow nanocapsules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号