首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Medicinal chemists have traditionally realized assessments of chemical diversity and subsequent compound acquisition, although a recent study suggests that experts are usually inconsistent in reviewing large data sets. To analyze the scaffold diversity of commercially available screening collections, we have developed a general workflow aimed at (1) identifying druglike compounds, (2) clustering them by maximum common substructures (scaffolds), (3) measuring the scaffold diversity encoded by each screening collection independently of its size, and finally (4) merging all common substructures in a nonredundant scaffold library that can easily be browsed by structural and topological queries. Starting from 2.4 million compounds out of 12 commercial sources, four categories of libraries could be identified: large- and medium-sized combinatorial libraries (low scaffold diversity), diverse libraries (medium diversity, medium size), and highly diverse libraries (high diversity, low size). The chemical space covered by the scaffold library can be searched to prioritize scaffold-focused libraries.  相似文献   

2.
The scaffold concept is widely applied in chemoinformatics and medicinal chemistry to organize bioactive compounds according to common core structures or associate compound classes with specific biological activities. A variety of scaffold analyses have been carried out to derive statistics for scaffold distributions, generate structural organization schemes, or identify scaffolds that preferentially occur in given compound activity classes. Herein we further extend scaffold analysis by identifying scaffolds that display defined SAR profiles consisting of multiple properties. A structural relationship-based scaffold network has been designed as the basic data structure underlying our analysis. From network representations of scaffolds extracted from compounds active against 32 different target families, scaffolds with different SAR profiles have been extracted on the basis of decision trees that capture structural and functional characteristics of scaffolds in different ways. More than 600 scaffolds and 100 scaffold clusters were assigned to 10 SAR profiles. These scaffold sets represent different activity and target selectivity profiles and are provided for further SAR investigations including, for example, the exploration of alternative analog series for a given target of target family or the design of novel compounds on the basis of scaffold(s) with desired SAR profiles.  相似文献   

3.
Regulation of protein activity is essential for revealing the molecular mechanisms of biological processes. DNA and RNA achieve many uniquely efficient functions, such as genetic expression and regulation. The chemical capability to synthesize artificial nucleotides can expand the chemical space of nucleic acid libraries and further increase the functional diversity of nucleic acids. Herein, a versatile method has been developed for modular expansion of the chemical space of nucleic acid libraries, thus enabling the generation of aptamers able to regulate protein activity. Specifically, an aptamer that targets integrin alpha3 was identified and this aptamer can inhibit cell adhesion and migration. Overall, this chemical‐design‐assisted in vitro selection approach enables the generation of functional nucleic acids for elucidating the molecular basis of biological activities and uncovering a novel basis for the rational design of new protein‐inhibitor pharmaceuticals.  相似文献   

4.
A library of saturated bridged heterocycles based on 3,6-diazabicyclo[3.2.1]octane-2,4-dione and bispidine scaffolds (mean compound molecular weight is approximately 300 Da) with up to three stereocenters and four diversity points has been synthesized. Synthetic scaffold modifications leading to an increase in molecular complexity were studied. Well-defined stereochemical structures of both compound sets was confirmed by X-ray studies and halogenoaryl substituents were inserted appropriately for the design of novel non-basic serine protease inhibitors. Comprehensive molecular modeling has been performed for all synthesized compounds giving rationales of ligand–enzyme interactions with thrombin and trypsin. Biological testing confirmed moderate inhibitory activity of halogen-substituted saturated diazabicyclic small molecules towards thrombin.  相似文献   

5.
An alternative to experimental high through-put screening is the virtual screening of compound libraries on the computer. In absence of a detailed structure of the receptor protein, candidate molecules are compared with a known reference by mutually superimposing their skeletons and scoring their similarity. Since molecular shape highly depends on the adopted conformation, an efficient conformational screening is performed using a knowledge-based approach. A comprehensive torsion library has been compiled from crystal data stored in the Cambridge Structural Database. For molecular comparison a strategy is followed considering shape associated physicochemical properties in space such as steric occupancy, electrostatics, lipophilicity and potential hydrogen-bonding. Molecular shape is approximated by a set of Gaussian functions not necessarily located at the atomic positions. The superposition is performed in two steps: first by a global alignment search operating on multiple rigid conformations and then by conformationally relaxing the best scored hits of the global search. A normalized similarity scoring is used to allow for a comparison of molecules with rather different shape and size. The approach has been implemented on a cluster of parallel processors. As a case study, the search for ligands binding to the dopamine receptor is given.  相似文献   

6.
Identification of novel compound classes for a drug target is a challenging task for cheminformatics and drug design when considerable research has already been undertaken and many potent lead structures have been identified, which leaves limited unclaimed chemical space for innovation. We validated and successfully applied different state-of-the-art techniques for virtual screening (Bayesian machine learning, automated molecular docking, pharmacophore search, pharmacophore QSAR and shape analysis) of 4.6 million unique and readily available chemical structures to identify promising new and competitive antagonists of the strychnine-insensitive Glycine binding site (GlycineB site) of the NMDA receptor. The novelty of the identified virtual hits was assessed by scaffold analysis, putting a strong emphasis on novelty detection. The resulting hits were tested in vitro and several novel, active compounds were identified. While the majority of the computational methods tested were able to partially discriminate actives from structurally similar decoy molecules, the methods differed substantially in their prospective applicability in terms of novelty detection. The results demonstrate that although there is no single best computational method, it is most worthwhile to follow this concept of focused compound library design and screening, as there still can new bioactive compounds be found that possess hitherto unexplored scaffolds and interesting variations of known chemotypes.  相似文献   

7.
High-throughput screening (HTS) campaigns in pharmaceutical companies have accumulated a large amount of data for several million compounds over a couple of hundred assays. Despite the general awareness that rich information is hidden inside the vast amount of data, little has been reported for a systematic data mining method that can reliably extract relevant knowledge of interest for chemists and biologists. We developed a data mining approach based on an algorithm called ontology-based pattern identification (OPI) and applied it to our in-house HTS database. We identified nearly 1500 scaffold families with statistically significant structure-HTS activity profile relationships. Among them, dozens of scaffolds were characterized as leading to artifactual results stemming from the screening technology employed, such as assay format and/or readout. Four types of compound scaffolds can be characterized based on this data mining effort: tumor cytotoxic, general toxic, potential reporter gene assay artifact, and target family specific. The OPI-based data mining approach can reliably identify compounds that are not only structurally similar but also share statistically significant biological activity profiles. Statistical tests such as Kruskal-Wallis test and analysis of variance (ANOVA) can then be applied to the discovered scaffolds for effective assignment of relevant biological information. The scaffolds identified by our HTS data mining efforts are an invaluable resource for designing SAR-robust diversity libraries, generating in silico biological annotations of compounds on a scaffold basis, and providing novel target family specific scaffolds for focused compound library design.  相似文献   

8.
9.
Computational scaffold hopping aims to identify core structure replacements in active compounds. To evaluate scaffold hopping potential from a principal point of view, regardless of the computational methods that are applied, a global analysis of conventional scaffolds in analog series from compound activity classes was carried out. The majority of analog series was found to contain multiple scaffolds, thus enabling the detection of intra-series scaffold hops among closely related compounds. More than 1000 activity classes were found to contain increasing proportions of multi-scaffold analog series. Thus, using such activity classes for scaffold hopping analysis is likely to overestimate the scaffold hopping (core structure replacement) potential of computational methods, due to an abundance of artificial scaffold hops that are possible within analog series.  相似文献   

10.
Diversity-oriented synthesis (DOS) has become a powerful synthetic tool that facilitates the construction of nature-inspired and privileged chemical space, particularly for sp3-rich non-flat scaffolds, which are needed for phenotypic screening campaigns. These diverse compound collections led to the discovery of novel chemotypes that can modulate the protein function in underrepresented biological space. In this context, starting material-driven DOS is one of the most important tools used to build diverse compound libraries with rich stereochemical and scaffold diversity. To this end, ene/yne tethered salicylaldehyde derivatives have emerged as a pluripotent chemical platform, the products of which led to the construction of a privileged chemical space with significant biological activities. In this review, various domino transformations employing o-alkene/alkyne tethered aryl aldehyde/ketone platforms are described and discussed, with emphasis on the period from 2011 to date.  相似文献   

11.
One important class of HDAC (histone deacetylation enzymes) inhibitors is the sulfur-containing marine natural products with structural diversity. Inspired by two structurally distinguishing examples, Largazole and Psammaplin A, which possess macrocyclic depsipeptide and simple linear amide scaffold respectively, we designed one novel molecular hybrid by replacing the alkene moiety in Largazole with a semirigid amide bond. This hybrid compound has been synthesized from l-malic acid in 10 steps with an overall yield of 7%. The preliminary biological assays suggest that the replacement of trans olefin moiety with amide bond will lead to an unbeneficial effect on the inhibition against HDACs.  相似文献   

12.
Described herein is a facile and efficient methodology toward the synthesis of novel convolutamydine A-incorporated morusignin L scaffold 3 from an aldol addition event of carbonyl compounds to isatins through enamine catalysis. Products featuring a quaternary carbon center were smoothly obtained in good yields (up to 85% yield). This protocol also represents the first construction of flavonoid skeleton-fused oxindole molecules, thus leading to new knowledge in the fields of both molecular complexity and diversity synthesis and the lead compound discovery. Furthermore, their biological activities against human prostate cancer cells PC-3 and human leukemia cells K562 have been preliminarily demonstrated by in vitro assays. The results demonstrated that most of these compounds obtained by this protocol showed comparable or even much better activity than the positive control of cisplatin.  相似文献   

13.
The S-Malic acid is a natural constituent and common metabolite of plants and animals, being involved in the Krebs cycle and in the glyoxylic acid cycle. Malic acid's metal ion chelating abilities bring about changes in the solubility of metals and influence significantly their mobilization and bioavailability in biological media. Recently, a steady flow of reports on the molecular characterization of tungsten-containing enzyme from a wide range of microorganisms has drastically changed our appreciation of tungsten. Biological tungsten is not an odd remnant of evolution but a widespread, versatile catalytic entity for the activation of the carbonyl group both in carbon dioxide and in a broad spectrum of aldehydes and carboxylic acids. The interaction of tungsten with dicarboxylic acid such as malate may provide a scaffold onto which reasonable hypotheses can be built pertaining to that metal ion's chemical speciation in biological fluids. However, scant information has been available on tungsten dicarboxylate chemistry, with equally unavailable structural data on elusive complexed forms in biological media. The lack of such data prompted us to investigate the tungsten-malate chemistry, targeting low molecular weight complexes soluble in aqueous media.  相似文献   

14.
The scaffold diversity of 7 representative commercial and proprietary compound libraries is explored for the first time using both Murcko frameworks and Scaffold Trees. We show that Level 1 of the Scaffold Tree is useful for the characterization of scaffold diversity in compound libraries and offers advantages over the use of Murcko frameworks. This analysis also demonstrates that the majority of compounds in the libraries we analyzed contain only a small number of well represented scaffolds and that a high percentage of singleton scaffolds represent the remaining compounds. We use Tree Maps to clearly visualize the scaffold space of representative compound libraries, for example, to display highly populated scaffolds and clusters of structurally similar scaffolds. This study further highlights the need for diversification of compound libraries used in hit discovery by focusing library enrichment on the synthesis of compounds with novel or underrepresented scaffolds.  相似文献   

15.
In recent years, many virtual screening (VS) tools have been developed that employ different molecular representations and have different speed and accuracy characteristics. In this paper, we compare ten popular ligand-based VS tools using the publicly available Directory of Useful Decoys (DUD) data set comprising over 100?000 compounds distributed across 40 protein targets. The DUD was developed initially to evaluate docking algorithms, but our results from an operational correlation analysis show that it is also well suited for comparing ligand-based VS tools. Although it is conventional wisdom that 3D molecular shape is an important determinant of biological activity, our results based on permutational significance tests of several commonly used VS metrics show that the 2D fingerprint-based methods generally give better VS performance than the 3D shape-based approaches for surprisingly many of the DUD targets. To help understand this finding, we have analyzed the nature of the scoring functions used and the composition of the DUD data set itself. We propose that to improve the VS performance of current 3D methods, it will be necessary to devise screening queries that can represent multiple possible conformations and which can exploit knowledge of known actives that span multiple scaffold families.  相似文献   

16.
Small‐molecule modulators of biological targets play a crucial role in biology and medicine. In this context, diversity‐oriented synthesis (DOS) provides strategies toward generating small molecules with a broad range of unique scaffolds, and hence three‐dimensionality, to target a broad area of biological space. In this study, an organocatalysis‐derived DOS library of macrocycles was synthesized by exploiting the pluripotency of aldehydes. The orthogonal combination of multiple diversity‐generating organocatalytic steps with alkene metathesis enabled the synthesis of 51 distinct macrocyclic structures bearing 48 unique scaffolds in only two to four steps without the need for protecting groups. Furthermore, merging organocatalysis and alkene metathesis in a one‐pot protocol facilitated the synthesis of drug‐like macrocycles with natural‐product‐like levels of shape diversity in a single step.  相似文献   

17.
18.
Uses of plants extracts are found to be more advantageous over chemical, physical and microbial (bacterial, fungal, algal) methods for silver nanoparticles (AgNPs) synthesis. In phytonanosynthesis, biochemical diversity of plant extract, non-pathogenicity, low cost and flexibility in reaction parameters are accounted for high rate of AgNPs production with different shape, size and applications. At the same time, care has to be taken to select suitable phytofactory for AgNPs synthesis based on certain parameters such as easy availability, large-scale nanosynthesis potential and non-toxic nature of plant extract. This review focuses on synthesis of AgNPs with particular emphasis on biological synthesis using plant extracts. Some points have been given on selection of plant extract for AgNPs synthesis and case studies on AgNPs synthesis using different plant extracts. Reaction parameters contributing to higher yield of nanoparticles are presented here. Synthesis mechanisms and overview of present and future applications of plant-extract-synthesized AgNPs are also discussed here. Limitations associated with use of AgNPs are summarised in the present review.  相似文献   

19.
The cinchona alkaloids are a privileged class of natural products and are endowed with diverse bioactivities. However, for compounds with the closely‐related oxazatricyclo[4.4.0.0]decane (“oxazatwistane”) scaffold, which are accessible from cinchonidine and quinidine by means of ring distortion and modification, biological activity has not been identified. We report the synthesis of an oxazatwistane compound collection through employing state‐of‐the‐art C−H functionalization, and metal‐catalyzed cross‐coupling reactions as key late diversity‐generating steps. Exploration of oxazatwistane bioactivity in phenotypic assays monitoring different cellular processes revealed a novel class of autophagy inhibitors termed oxautins, which, in contrast to the guiding natural products, selectively inhibit autophagy by inhibiting both autophagosome biogenesis and autophagosome maturation.  相似文献   

20.
In this review, we discuss a number of computational methods that have been developed or adapted for molecule classification and virtual screening (VS) of compound databases. In particular, we focus on approaches that are complementary to high-throughput screening (HTS). The discussion is limited to VS methods that operate at the small molecular level, which is often called ligand-based VS (LBVS), and does not take into account docking algorithms or other structure-based screening tools. We describe areas that greatly benefit from combining virtual and biological screening and discuss computational methods that are most suitable to contribute to the integration of screening technologies. Relevant approaches range from established methods such as clustering or similarity searching to techniques that have only recently been introduced for LBVS applications such as statistical methods or support vector machines. Finally, we discuss a number of representative applications at the interface between VS and HTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号