首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most important applications for photocatalysis is engineered water treatment that photodegrades organic pollutants in wastewater at low cost. To overcome the low efficiency of batch degradation methods, continuous‐flow photocatalytic reactors have been proposed and have become the most promising method for mass water treatment. However, most commercial semiconductor photocatalysts are granular nanoparticles with low activity and a narrow active light wavelength band; this creates difficulties for direct use in continuous‐flow photocatalytic reactors. Therefore, a high‐performance photodegradation photocatalyst with proper morphology or structure is key for continuous photocatalytic degradation. Moreover, a well‐designed photocatalytic device is another important component for continuous‐flow photocatalysis and determines the efficiency of photocatalysis in practical water treatment. This review describes the basic design principles and synthesis of photocatalysts with excellent performance and special morphologies suitable for a filtering photocatalysis process. Certain promising continuous photodegradation reactors are also categorized and summarized. Additionally, selected scientific and technical problems that must be urgently solved are suggested.  相似文献   

2.
A combination of microwave irradiation and flow chemistry has been described as a promising smart and hyphenated technology that can fuse and synergize the benefits of the techniques. The cells and tissues of all living organisms promote a huge number of bioorganic reactions that occur as flow systems and not the batch‐type conditions typically used by chemists and biotechnologists. Microwave‐assisted chemical conversion carried out in continuous flow mode with micro‐ or meso‐channel reactors can offer significant processing advantages, including improved thermal exchange, energy efficiency, safety, mixing control, a wider range of reaction conditions, repeatability and scalability as well as dramatic reductions in side‐reactions and degradations. This review will discuss relevant examples of organic synthesis and nanoparticles production performed in continuous flow mode with integrated microwave irradiation in micro‐ or mesofluidic systems.  相似文献   

3.
Microwave heating in chemical reactions was first reported in 1986. There have since been many reports employing microwave heating in organic chemistry, where microwave heating has afforded higher yields of products in shorter time periods. However, such reactions are challenging to scale in batch due to the limited penetration depth of microwaves as well as the wave propagation dependence on cavity size. Continuous flow has addressed both these issues, enabling scalability of microwave processes. As such, a host of reports employing microwave flow chemistry have emerged, employing various microwave heating and reactor configurations in the context of either custom‐built or commercial apparatus. The focus of this review is to present the benefits of microwave heating in the context of continuous flow and to characterize the different types of microwave flow apparatus by their design (oscillator, cavity type and reactor vessel). We advocate the adoption of tunable, solid‐state oscillator single‐mode microwave flow reactors which are more versatile heaters, impart better process control and energy efficiency toward laboratory and larger‐scale synthetic chemistry applications.  相似文献   

4.
Microwave‐assisted continuous‐flow reactions have attracted significant interest from synthetic organic chemists, especially process chemists from practical points of view, due to a less complicated shift to large‐scale synthesis based on simple and continuous access to products with low energy requirements. In this personal account, we focused on the Suzuki‐Miyaura and Mizoroki‐Heck reactions, both of which are significantly important cross‐coupling reactions for the synthesis of various functional materials. Microwave power is effective for heating. Typical homogeneous palladium catalysts, such as PdCl2(PPh3)2, Pd(PPh3)4, and Pd(OAc)2, as well as heterogeneous palladium catalysts, such as Pd‐film, Pd/Al2O3, Pd/SiO2, and Pd supported on polymers, can be used for these reactions.  相似文献   

5.
Microreactor technology and continuous flow processing in general are key features in making organic synthesis both more economical and environmentally friendly. When preformed under a high‐temperature/pressure process intensification regime many transformations originally not considered suitable for flow synthesis owing to long reaction times can be converted into high‐speed flow chemistry protocols that can operate at production‐scale quantities. This Focus Review summarizes the state of the art in high‐temperature/pressure microreactor technology and provides a survey of successful applications of this technique from the recent synthetic organic chemistry literature.  相似文献   

6.
Solid reagents, leaching catalysts, and heterogeneous photocatalysts are commonly employed in batch processes but are ill‐suited for continuous‐flow chemistry. Heterogeneous catalysts for thermal reactions are typically used in packed‐bed reactors, which cannot be penetrated by light and thus are not suitable for photocatalytic reactions involving solids. We demonstrate that serial micro‐batch reactors (SMBRs) allow for the continuous utilization of solid materials together with liquids and gases in flow. This technology was utilized to develop selective and efficient fluorination reactions using a modified graphitic carbon nitride heterogeneous catalyst instead of costly homogeneous metal polypyridyl complexes. The merger of this inexpensive, recyclable catalyst and the SMBR approach enables sustainable and scalable photocatalysis.  相似文献   

7.
Flexible composite polymer/oxide hollow fibers are used as flow reactors for heterogeneously catalyzed reactions in organic synthesis. The fiber synthesis allows for a variety of supported catalysts to be embedded in the walls of the fibers, thus leading to a diverse set of reactions that can be catalyzed in flow. Additionally, the fiber synthesis is scalable (e.g. several reactor beds containing many fibers in a module may be used) and thus they could potentially be used for the large‐scale production of organic compounds. Incorporating heterogeneous catalysts in the walls of the fibers presents an alternative to a traditional packed‐bed reactor and avoids large pressure drops, which is a crucial challenge when employing microreactors.  相似文献   

8.
We present a fully continuous chip microreactor‐based multistage platform for the synthesis of quantum dots with heterostructures. The use of custom‐designed chip reactors enables precise control of heating profiles and flow distribution across the microfluidic channels while conducting multistep reactions. The platform can be easily reconfigured by reconnecting the differently designed chip reactors allowing for screening of various reaction parameters during the synthesis of nanocrystals. III–V core/shell quantum dots are chosen as model reaction systems, including InP/ZnS, InP/ZnSe, InP/CdS and InAs/InP, which are prepared in flow using a maximum of six chip reactors in series.  相似文献   

9.
This concept article provides a brief outline of the concept of flash chemistry for carrying out extremely fast reactions in organic synthesis by using microreactors. Generation of highly reactive species is one of the key elements of flash chemistry. Another important element of flash chemistry is the control of extremely fast reactions to obtain the desired products selectively. Fast reactions are usually highly exothermic, and heat removal is an important factor in controlling such reactions. Heat transfer occurs very rapidly in microreactors by virtue of a large surface area per unit volume, making precise temperature control possible. Fast reactions often involve highly unstable intermediates, which decompose very quickly, making reaction control difficult. The residence time can be greatly reduced in microreactors, and this feature is quite effective in controlling such reactions. For extremely fast reactions, kinetics often cannot be used because of the lack of homogeneity of the reaction environment when they are conducted in conventional reactors such as flasks. Fast mixing using micromixers solves such problems. The concept of flash chemistry has been successfully applied to various organic reactions including a) highly exothermic reactions that are difficult to control in conventional reactors, b) reactions in which a reactive intermediate easily decomposes in conventional reactors, c) reactions in which undesired byproducts are produced in the subsequent reactions in conventional reactors, and d) reactions whose products easily decompose in conventional reactors. The concept of flash chemistry can be also applied to polymer synthesis. Cationic polymerization can be conducted with an excellent level of molecular-weight control and molecular-weight distribution control.  相似文献   

10.
In recent years, continuous‐flow/microreactor processing for the preparation of colloidal nanocrystals has received considerable attention. The intrinsic advantages of microfluidic reactors have opened new opportunities for the size‐controlled synthesis of nanocrystals either in the laboratory or on a large scale. Herein, an experimentally simple protocol for the size‐tunable continuous‐flow synthesis of rather monodisperse CdSe quantum dots (QDs) is presented. CdSe QDs are manufactured by using cadmium oleate as cadmium source, selenium dioxide as selenium precursor, and 1‐octadecene as solvent. Exploiting selenium dioxide as selenium source and 1‐octadecene as solvent allows execution of the complete process in open air without any requirement for air‐free manipulations using a glove box or Schlenk line. Continuous‐flow processing is performed with a stainless steel coil of 1.0 mm inner diameter pumping the combined precursor solution through the reactor by applying a standard HPLC pump. The effect of different reaction parameters, such as temperature, residence time, and flow rate, on the properties of the resulting CdSe QDs was investigated. A temperature increase from 240 to 260 °C or an extension of the residence time from 2 to 20 min affords larger nanocrystals (range 3–6 nm) whereas the size distribution does not change significantly. Longer reaction times and higher temperatures result in QDs with lower quantum yields (range 11–28 %). The quality of the synthesized CdSe QDs was confirmed by UV/Vis and photoluminescence spectroscopy, small‐angle X‐ray scattering, and high‐resolution transmission electron microscopy. Finally, the potential of this protocol for large‐scale manufacturing was evaluated and by operating the continuous‐flow process for 87 min it was possible to produce 167 mg of CdSe QDs (with a mean diameter of 4 nm) with a quantum yield of 28 %.  相似文献   

11.
With the development of new photocatalytic methods over recent decades, the translation of these chemical reactions to industrial‐production scales using continuous‐flow reactors has become a topic of increasing interest. In this context, we describe our studies toward elucidating an empirically derived parameter for scaling photocatalytic reactions in flow. By evaluating the performance of a photocatalytic C?N cross‐coupling reaction across multiple reactor sizes and geometries, it was demonstrated that expressing product yield as a function of the absorbed photon equivalents provides a predictive, empirical scaling parameter. Through the use of this scaling factor and characterization of the photonic flux within each reactor, the cross‐coupling was scaled successfully from the milligram scale in batch to a multi‐kilogram reaction in flow.  相似文献   

12.
Superparamagnetic nanoparticles coated with silica gel or alternatively steel beads are new fixed-bed materials for flow reactors that efficiently heat reaction mixtures in an inductive field under flow conditions. The scope and limitations of these novel heating materials are investigated in comparison with conventional and microwave heating. The results suggest that inductive heating can be compared to microwave heating with respect to rate acceleration. It is also demonstrated that a very large diversity of different reactions can be performed under flow conditions by using inductively heated flow reactors. These include transfer hydrogenations, heterocyclic condensations, pericyclic reactions, organometallic reactions, multicomponent reactions, reductive cyclizations, homogeneous and heterogeneous transition-metal catalysis. Silica-coated iron oxide nanoparticles are stable under many chemical conditions and the silica shell could be utilized for further functionalization with Pd nanoparticles, rendering catalytically active heatable iron oxide particles.  相似文献   

13.
A safe and efficient flow‐chemistry‐based procedure is presented for 1,3‐dipolar cycloaddition reactions between organic azides and acetylenes. This simple and inexpensive technique eliminates the need for costly special apparatus and utilizes Cu powder as a plausible CuI source. To maximize the reaction rates, high‐pressure/high‐temperature conditions are utilized; alternatively, the harsh reaction conditions can be moderated at room temperature by the joint application of basic and acidic additives. A comparison of the performance of these two approaches in a series of model reactions has resulted in the formation of useful 1,4‐disubstituted 1,2,3‐triazoles in excellent yields. The risks that are associated with the handling of azides are lowered, thanks to the benefits of flow processing, and gram‐scale production has been safely implemented. The synthetic capability of this continuous‐flow technique is demonstrated by the efficient syntheses of some highly functionalized derivatives of the antifungal cispentacin.  相似文献   

14.
In the last decade, the application of monolithic materials has rapidly expanded to the realization of flow‐through bioconversion processes. Up to these days, different classes of enzymes such as hydrolases, lyases, and oxidoreductases have been immobilized on organic, inorganic, or hybrid monolithic materials to prepare the effective flow‐through enzymes reactors for application in proteomics, biotechnology, pharmaceutics, organic synthesis, and biosensoring. Current review describes the results of kinetic study and specialties of flow‐through immobilized enzyme reactors based on the existing monolithic materials.  相似文献   

15.
Chlorosilanes are versatile reagents in organic synthesis and material science. A mild pathway is now reported for the quantitative conversion of hydrosilanes to silyl chlorides under visible‐light irradiation using neutral eosin Y as a hydrogen‐atom‐transfer photocatalyst and dichloromethane as a chlorinating agent. Stepwise chlorination of di‐ and trihydrosilanes was achieved in a highly selective fashion assisted by continuous‐flow micro‐tubing reactors. The ability to access silyl radicals using photocatalytic Si?H activation promoted by eosin Y offers new perspectives for the synthesis of valuable silicon reagents in a convenient and green manner.  相似文献   

16.
Microwave irradiation has been used for accelerating organic reactions as a heating method and has been proven to be useful in laboratory scale organic synthesis. The major drawback of microwave chemistry is the difficulty in scaling up, mainly because of the low penetration depth of microwaves. The combination of microwave chemistry and flow chemistry is considered to overcome the problem in scaling up of microwave‐assisted organic reactions, and some flow microwave systems have been developed in both academic and industrial communities. In this context, we have demonstrated the scale‐up of fundamental organic reactions using a novel flow microwave system developed by the academic‐industrial alliance between the University of Shizuoka, Advanced Industrial Science and Technology, and SAIDA FDS. In this Personal Account, we summarize the recent progress of our scalable microwave‐assisted continuous synthesis using the SAIDA flow microwave apparatus.  相似文献   

17.
This article describes the design, optimisation and development of a continuous flow synthesis of N,N‐diethyl‐4‐(3‐fluorophenylpiperidin‐4‐ylidenemethyl)benzamide, a potent δ‐opioid receptor agonist developed by AstraZeneca. The process employs a sequence of flow‐based microreactors, with integrated purification employing solid‐supported reagents and in‐line IR analytical protocols using a newly developed ReactIR flow cell. With this monitoring device, initiation of the fourth input flow stream can be precisely controlled during the synthesis.  相似文献   

18.
Besides additions and substitutions, elimination reactions play a fundamental role in organic synthesis. However, conceptual reviews of known 1,x‐elimination patterns that go beyond the typical olefin‐forming 1,2‐eliminations are scarce. To develop a broader understanding of elimination reactions, we follow a heuristic approach and deduce recurrent reaction patterns from traditional and specific elimination reactions. Our work demonstrates that 1,x‐elimination reactions and their outcomes can be easily rationalized by defined mnemonic categories.  相似文献   

19.
Carbenes are very important reactive intermediates to access a variety of complex molecules and are applied widely in organic synthesis and drug discovery. Typically, their chemistry is accessed by the use of transition metal catalysts. Herein, we describe the application of low‐energy blue light for the photochemical generation of carbenes from donor–acceptor diazoalkanes. This catalyst‐free and operationally simple approach enables highly efficient cyclopropenation reactions with alkynes and the rearrangement of sulfides under mild reaction conditions, which can be utilized for both batch and continuous‐flow processes.  相似文献   

20.
Metal–organic frameworks are having a tremendous impact on novel strategic applications, with prospective employment in industrially relevant processes. The development of such processes is strictly dependent on the ability to generate materials with high yield efficiency and production rate. We report a versatile and highly efficient method for synthesis of metal–organic frameworks in large quantities using continuous flow processing under microwave irradiation. Benchmark materials such as UiO‐66, MIL‐53(Al), and HKUST‐1 were obtained with remarkable mass, space–time yields, and often using stoichiometric amounts of reactants. In the case of UiO‐66 and MIL‐53(Al), we attained unprecedented space–time yields far greater than those reported previously. All of the syntheses were successfully extended to multi‐gram high quality products in a matter of minutes, proving the effectiveness of continuous flow microwave technology for the large scale production of metal–organic frameworks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号