首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-diffusion data obtained using pulsed-field-gradient nuclear magnetic resonance spectroscopy are presented for the poly-d-glucose molecules, dextran, amylopectin and glycogen in water and dimethyl sulphoxide. A model is developed for the influence of macroparticle shape on the concentration-dependence of polymer self-diffusion. The concentration-dependence of solvent and polymer self-diffusion indicates that amylopectin is planar with an axial ratio in excess of 6. In contrast, the dextran and glycogen data are consistent with random coil and spherical particle models, respectively. Both amylopectin and glycogen exhibit significantly different dimensions in the two solvent used.  相似文献   

2.
The lyophobic surface of monodisperse magnetic nanoparticles capped by oleic acid was made to be more lyophilic by ozonolysis to increase the stability of the suspension in polar solvents like ethanol. The ozone oxidatively cleaved the double bond of oleic acid to form carbonyl and carboxyl groups on the surface of the nanoparticles. Additionally, interfacial ligand exchange of the capping molecules was applied to make the hydrophobic particle surface more hydrophilic. The magnetic particles showed enhanced miscibility and short-term stability in water after interfacial ligand exchange. The structure changes of the capping molecules on the nanoparticle surfaces were investigated using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). From these spectroscopy studies, the cleavage of the oleic acid and the formations of the carboxyl and carbonyl groups on the particle surface were confirmed. The shape and the magnetic properties of the nanoparticles were maintained after the surface modification. Ozonolysis is an effective method in modifying the lyophobic surface of the magnetic nanoparticles.  相似文献   

3.
The surface structure of oxide-supported metal nanoparticles can be determined via characteristic vibrations of adsorbed probe molecules such as CO. Usually, spectroscopic studies focus on peak position and intensity, which are related to binding geometries and number of adsorption sites, respectively. Employing two differently prepared model catalysts, it is demonstrated that polarization-dependent sum-frequency-generation (SFG) spectroscopy reveals the average surface structure and shape of the nanoparticles. SFG results for different particle sizes and morphologies are compared to direct real-space structure analysis by TEM and STM. The described feature of SFG could be used to monitor particle restructuring in situ and may be a valuable tool for operando catalysis.  相似文献   

4.
The equation of state for systems of hard prolate spherocylinders has been obtained using a Monte Carlo simulation method. The result in the fluid region are compared with the predictions of scaled particle theory, and are found to agree quite well. The equation of state is significantly different from that for hard sphere molecules, and it is concluded that the effects of non-spherical shape must be explicitly dealt with.  相似文献   

5.
报导了含葡萄糖、果糖和蔗糖的甲酰胺溶液的密度数据,无限稀释表观摩尔体积和体积第二维里系数.利用改进的定标粒子理论、基团几何模型和基团加合方法,求解了溶质的空腔生成体积,溶质-溶剂间的氢键作用对体积性质的影响,并和水溶液中的情况进行了比较.  相似文献   

6.
The possible influence of the cell shape on the derivation of the passive electrical parameters of a biological cell membrane is discussed in light of two different models which describe the cell as a shelled ellipsoidal particle and as a biconcave disk obtained by the revolution of the Cassini oval, respectively. Whereas within the first model, the Laplace equation can be solved analytically, in the second one a numerical algorithm based on the boundary element method has been employed. We have compared the results obtained by these two different models in the case of normal human erythrocyte cell membrane, using radiowave dielectric spectroscopy measurements. Our findings show that, although in principle the cell shape might deeply affect the evaluation of the passive electrical parameters of the cell membrane, in the case of the erythrocyte shape modelled by the Cassini curve, only small deviations are evidenced in comparison to the values derived, as usually done in the dielectric spectroscopy of biological cell suspensions, from an ellipsoidal model analysis. This result gives further support to the reliability of the data reported in the literature based on an ellipsoidal shape erythrocyte model.  相似文献   

7.
We study the properties of photoinduced metal-nitrosyl linkage isomers in sodium nitroprusside (SNP) as a function of particle size. By embedding the molecular complex at various concentrations into mesopores of silica xerogels the size of the particles can be adjusted. The ground state is characterized by X-ray diffraction, absorption and infrared spectroscopy. The physical properties of the photoswitched molecules were analysed by steady-state low-temperature absorption, infrared spectroscopy and by nanosecond transient absorption spectroscopy. The electronic structure as well as the activation energies of the metastable linkage isomers are independent of the particle size down to single isolated molecules, indicating that the SNP complexes are quasi-free inside the pores of the gel.  相似文献   

8.
《Liquid crystals》1998,24(4):619-626
In several smectic phases the long molecules are tilted towards the layer planes. The molecules in the layers of smectic C phases have a preferred tilt direction with a C2 rotation axis perpendicular to the tilt plane. If the molecules have a brick-like shape, a configuration possessing the D2h symmetry is also possible. For molecules shaped like chevrons or bananas, the existence of a smectic phase with the symmetry Cv was recently reported. We consider different in-plane configurations of smectics using a geometrical approach based on the 'scaled particle theory'. Varying the geometrical parameters of hard rod particles, a phase diagram for several smectic configurations is predicted. Depending on the particle shape, phases with dipolar order (C2,Cv) and quadrupolar order (D2h) can be stable.  相似文献   

9.
The interaction of a nonspherical metallic or nonmetallic particle with a rarefied thermal plasma flow is considered. Heat transfer to a particle of arbitrary shape with an extremely thin plasma sheath due to, respectively, gas molecules, electrons, and ions is described. Analytical expressions are derived for charge and heat fluxes in the particular case of a spheroidal metallic or nonmetallic particle in a subsonic plasma flow. It has been shown that the intensity of heat exchange is greatly influenced by gas ionization, charge transfer processes, and particle shape, velocity, and orientation in the plasma flow.  相似文献   

10.
周小会  颜红  肖守军 《无机化学学报》2011,27(11):2291-2297
通过简便的化学沉积法在多孔硅上制备银纳米粒薄膜用于表面增强红外光谱检测。通过Ag+与多孔硅表面的SiHx发生氧化还原反应将银纳米粒子沉积在多孔硅表面。红外探针分子溶解于无水乙醇中进而被均匀分散在多孔硅表面,实验结果显示:对氨基苯硫酚、对氨基苯甲酸和对氟苯硫酚3个探针分子的红外峰分别最大增强了10、85和21倍。银纳米粒的大小和形状等物理特性、探针分子是否有与银表面进行强结合的基团和芳烃结构、以及表面选律等因素影响表面增强红外的吸收效应。  相似文献   

11.
In several smectic phases the long molecules are tilted towards the layer planes. The molecules in the layers of smectic C phases have a preferred tilt direction with a C2 rotation axis perpendicular to the tilt plane. If the molecules have a brick-like shape, a configuration possessing the D2h symmetry is also possible. For molecules shaped like chevrons or bananas, the existence of a smectic phase with the symmetry Cv was recently reported. We consider different in-plane configurations of smectics using a geometrical approach based on the 'scaled particle theory'. Varying the geometrical parameters of hard rod particles, a phase diagram for several smectic configurations is predicted. Depending on the particle shape, phases with dipolar order (C2,Cv) and quadrupolar order (D2h) can be stable.  相似文献   

12.
Light scattering has long been established as a technique for measuring the molecular weight and radius of gyration of polymer molecules. Depolarized light scattering can be studied accurately with lassers. The theory of static and dynamic depolarized light-scattering spectroscopy is presented and illustrated with two examples of novel particles in solution. From the static intensity measured as a function of angle, the length of rod-like molecules can be evaluated. More complicated geometrical measures are obtained in the eneral case. From the dynamic light scattering, the translational self-diffusion coefficient and the rotational diffusion coefficient are obtained. These quantities can be interpreted in terms of a major semi-axis length and an axial ratio for the molecule or particle by using the Perrin equations.  相似文献   

13.
We investigated the formation of Pt nanocubes (NCs) and their electrocatalytic oxygen reduction reaction (ORR) properties and structural stability using two different capping agents, namely, polyvinylpyrrolidone (PVP) and oleylamine (OAm). The mono-dispersity of the obtained Pt NCs and their interactions with PVP and OAm were analyzed by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The TEM data show a high mono-dispersity (82 %) and a large mean particle size (9-10 nm) for the Pt NCs obtained by the oleylamine-assisted method compared to those prepared via the PVP-assisted procedure (68 %, 6–7 nm). FTIR, XPS, and TGA data show that PVP and OAm still remain at the Pt surface, despite washing. Interestingly, the OAm-capped Pt NCs show significantly higher electrochemically active surface area (ECSA) and ORR activity than the PVP-capped ones. An accelerated stress protocol, however, reveals that the OAm-capped NCs possess a poor structural stability during electrochemical cycling. The loss of a defined surface arrangement in the NCs is connected with a transformation into a near-spherical particle shape. In contrast, the PVP-capped NCs mainly retain their particle shape due to their strong capping behavior. In addition, we have developed a degradation model for NCs as a function of electrochemical parameters such as upper potential and cycle number. Altogether, we provide fundamental insights into the electronic interactions between capping agent and Pt NCs and the role of the adsorption strength of the capping agent in improving the electrochemical ORR performance as well as the structural stability of shape-controlled nanoparticles.  相似文献   

14.
PTFE超细颗粒的表面活化与化学接枝   总被引:2,自引:0,他引:2  
采用钠萘络合物化学腐蚀液对聚四氟乙烯(PTFE)超细颗粒表面进行活化, 对活化后的表面用氨基十一酸碳链进行化学接枝, 并用IR和XPS技术对活化及接枝前后颗粒的表面结构和价键状态进行了表征. 结果表明:活化后的PTFE超细颗粒表面上存在羟基、羰基、羧基等活性官能团, 并出现炭化现象;氨基十一酸的氨基能与表面羟基发生缩合反应, 并接枝于PTFE超细颗粒表面.  相似文献   

15.
In this work the preparation of chitosan nanoparticle was investigated using methacrylic acid in different conditions and studied by particle size analyzer, zeta-potential, Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). The particle size was dependent on the chitosan concentration used during the preparation method. Nanoparticles with sizes as small as 60 nm were achieved, that can be extremely important for several applications. The nanoparticles solution was also pH-sensitive, due to swelling and aggregation of the nanoparticles. The nanoparticles obtained presented a very homogeneous morphology showing a quite uniform particles size distribution and a rather spherical shape.  相似文献   

16.
The synthesis of Stöber silica particles as basis for redox modifications is optimized for desired properties, in particular diameter in a wide sub-micrometer range, spherical shape, monodispersity, the absence of porosity, and aggregation free isolability for characterization and later covalent modification. The materials are characterized by SEM, DLS, nitrogen sorption isotherms, helium as well as Gay-Lussac (water) pycnometry, and DRIFT spectroscopy. Particles with diameters between approximately 50 and 800 nm are obtained by varying the concentrations of the reagents and reactants, the type of solvent as well as the temperature. The use of high water concentrations and post-synthetic calcination at 600 °C results in silica particles that can be considered as nonporous with respect to the size of the active molecules to be immobilized. The effect of reaction temperature on size distribution is identified. Low polydispersity is achieved by performing the reaction in a temperature range in which a change in temperature has only a weak or no effect on the final particle diameter. Upon optimization of the sol–gel process, the shape of the particles is still spherical. The agreement between experimental and geometric data is within the expected precision of the characterization techniques.  相似文献   

17.
We fabricated porous gas sensing films composed of TiO2 nanotubes prepared by a hydrothermal treatment for the detection of organic gases, such as alcohol and toluene. The morphology of the sensing films was controlled with a ball-milling treatment and calcination at high temperature to improve the sensitivity of the films. The sensor using nanotubes with the ball-milling treatment exhibited the improved sensor responses to toluene at 500oC. The results obtained indicated the importance of the microstructure control of sensing layers in terms of particle packing density, pore size distribution, and particle size and shape for detecting large sized organic gas molecules.  相似文献   

18.
The mechanism of surface‐enhanced Raman spectroscopy (SERS) is not very clear in view of the magnitude of the contribution of electromagnetic factor as well as the chemical mechanism. This report presents the extent of adsorption at different temperatures in terms of signal enhancements in SERS employing silver nanoparticles (AgNPs) of various shapes as substrate and dye molecules, crystal violet or Rhodamine 6G, as model Raman probes. Initially, the SERS signal increases with increasing temperature until a maximum intensity is reached, before it gradually decreases with increasing temperature. This trend is independent of the shape of the Raman substrates and probes. However, the temperature at which maximum intensity is obtained may depend upon the nature of the Raman probe. The energetics involved in the chemisorption process between dye molecules and AgNPs were determined through isothermal titration calorimetry and their implications for the observed SERS signals were assessed. The maximum heat change occurred at the temperature at which the maximum signal enhancement in SERS was obtained and the enhanced interaction at optimum temperature was confirmed by absorption spectroscopy.  相似文献   

19.
Nanocrystalline titania powders were synthesized at low temperature (⩽100°C) by a sol–gel method that achieved fine control of particle size and polymorph fraction. X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–Vis spectroscopy were used to characterize the phase assemblages, crystal size and band gap of the powders. It was demonstrated that larger, well-ordered titania crystals can be obtained by increasing aging temperature and time. These processing parameters can be adjusted to select specific polymorphs from the gel precursors with particular size and shape. The quantum size effect was observed in the size-controlled nanocrystalline titania particles, leading to a blue shift in UV absorption with decreasing in particle size. The anatase to rutile transformation, which may proceed with brookite as a transition phase, is dependent on both particle size and surface structure of the nascent crystals.  相似文献   

20.
Cyclohexane and 2,3-dimethylbutane molecules are the most compact among saturated C6-hydrocarbons. They have a similar size and are arranged in the liquid phase like atoms in simple liquids. However, the cyclohexane density is higher approximately by 20% than that of 2,3-dimethylbutane. The reasons of this distinction are discussed. It can be explained within the concepts of the physics of simple liquids. According to them, a small variation of the radius of a particle hard core or the pair interaction energy can lead to appreciable changes in the structure and density of a liquid. The obtained results give grounds to discard the explanations based exclusively on the features of the shape of the given molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号