首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
脉冲激光引起铜膜镜面的环形损伤波纹研究   总被引:4,自引:2,他引:2       下载免费PDF全文
 用波长1.06μm、半高宽10ns的脉冲Nd:YAG激光辐照铜膜镜面,在激光辐照区,用光学显微镜观察到有规律的环形波纹状损伤图案,波纹平均周期约几十μm。通过对光路系统分析,认为样品前的小孔光阑对激光产生了菲涅尔衍射,使得在样品表面光强分布变成周期性环状分布。在极短的相互作用时间内,热扩散很小,损伤图案依赖于光强分布。并依据实验参数,用柯林斯公式对样品表面的光强分布进行了计算,所得光强分布的周期与损伤波纹的周期基本一致。  相似文献   

2.
角隅全反镜谐振腔激光器的输出特性   总被引:1,自引:1,他引:1       下载免费PDF全文
 在高功率脉冲气体激光器中,用角隅反射镜作为全反镜,平行平面镜作为输出镜构成角隅全反镜谐振腔。对角隅腔激光器的输出特性和抗失调稳定性进行了研究,并与平凹腔和平平腔激光器进行了比较。实验结果表明:在角隅全反镜失调角为16 mrad时,角隅腔激光器的单脉冲输出能量下降9.2%,且近场输出光斑没有明显变化;而凹面全反镜失调角仅为0.4 mrad时,平凹腔激光器输出能量下降了9%,近场输出光斑严重变形。在输出镜正前方3.12 m处测量,当角隅镜偏转16.3 mrad时,激光器输出光斑与标准状态时的输出光斑重合;凹面全反镜失调角为0.4 mrad时,激光器输出光斑位移14 mm。经模式仪分析表明,角隅腔激光器近场光强分布均匀。  相似文献   

3.
Laser micromachining on 1000 nm-thick gold film using femtosecond laser has been studied. The laser pulses that are used for this study are 400 nm in central wavelength, 150 fs in pulse duration, and the repetition rate is 1 kHz. Plano-concave lens with a focal length of 19 mm focuses the laser beam into a spot of 3 μm (1/e2 diameter). The sample was translated at a linear speed of 400 μm/s during machining. Grooves were cut on gold thin film with laser pulses of various energies. The ablation depths were measured and plotted. There are two ablation regimes. In the first regime, the cutting is very shallow and the edges are free of molten material. While in the second regime, molten material appears and the cutting edges are contaminated. The results suggest that clean and precise microstructuring can be achieved with femtosecond pulsed laser by controlling the pulse energy in the first ablation regime.  相似文献   

4.
The interaction phenomena of nanosecond time period Q-switched diode-pumped Nd:YAG laser pulses using 1064, 532 and 355 nm with 0.25 mm thick pure-copper foil was investigated at an incident laser intensity range of 0.5–57.9 GW/cm2. For each sample, etch rate and surface structure were determined. Analysis of the results of the tests included scanning electron microscopy (SEM). A maximum etch rate of 13.3 μm per pulse was obtained for the etch rate tests carried out at 532 nm. The maximum etch rate obtainable for 1064 nm was 2.21 μm per pulse, and for 355 nm, 6.68 μm per pulse. The dramatic decrease in etch rate observed when processing at 1064 nm is thought to occur due the highly reflective nature of copper as the interaction wavelength is increased, plus the nature of the plasma formed above the material during the high-intensity laser–material interaction. This plasma then imparts energy to the surface of the processed area leading to surface melting of the area surrounding the hole as can be seen by the SEM photographs.  相似文献   

5.
To establish optimal processing conditions for direct write fabrication of diffractive optical elements such as gratings, waveguides, lenses, we have investigated the effect of process parameters such as scan speed, numerical aperture (NA) of objective lens, pulse energy on the characteristics of the filament induced inside fused silica with a femtosecond Ti:sapphire laser. The optimum process parameters were used to fabricate a number of Dammann gratings, 6×6 array, having different thicknesses and number of layers. The performance of these optical elements was evaluated by measuring their diffraction efficiencies. All gratings fabricated were strongly birefringent, the zero order spot with high intensity was not separated from the spot array, and the intensity distribution of 6×6 spot array exhibited some degree of nonuniformity. The single layer Dammann grating fabricated with a thickness of 80 μm attained a maximum diffraction efficiency of 38.8%.  相似文献   

6.
In this work, the effects of laser irradiation on fused silica at 355 nm are investigated by using transient absorption spectroscopy and luminescence spectroscopy. Our result shows that no transient absorption or luminescence in the spectra range from 400 nm to 600 nm is observed when laser energy density is below the damage threshold. When the laser energy density reaches the threshold, an initial damage site will be created. After subsequent laser pulses irradiation, the damage size grows. At the same time, the intensity of the transient absorption and luminescence spectra at the damage site also raises remarkably with the laser pulse number increasing. The absorption band from 420 nm to 520 nm is probably related to the absorption of impurity such as metal ion of iron, cerium and copper. Laser modified fused silica exhibits intense broad luminescence bands due to oxygen-deficiency centers at 444 nm and 580 nm.  相似文献   

7.
A gold thin film was machined by laser ablation using a femtosecond laser with mask patterns in the shape of lines and numbers. The patterns were successfully transferred with proper focusing and laser fluence. The optimal femtosecond laser fluence to keep the line width was about 5.2 mJ/cm2 on the mask, and 99 mJ/cm2 on the film. The processing resolution was 13 μm, and the narrowest line width was about 4 μm.  相似文献   

8.
X. Wang 《Applied Surface Science》2010,257(5):1583-1588
The surface damage morphologies of single crystal silicon induced by 1064 nm millisecond Nd:YAG laser are investigated. After irradiation, the damage morphologies of silicon are inspected by optical microscope (OM) and atomic force microscope (AFM). The plasma emission spectra of the damaged region are detected by the spectrometer. It is shown that surface oxidation and nitridation have occurred during the interaction of millisecond laser with silicon. In addition, the damage morphologies induced by 2 ms and 10 ns pulse width laser are compared. The damage morphology obtained by 2 ms laser is an evident crater. Three types of damage morphologies are formed at different laser energy densities. The circular concentric ripples are found surrounding the rim of the crater. The spacing of the ripples is 15 ± 5 μm. Two types of cracks are observed: linear crack and circular crack. The linear crack is observed in the center of the damaged region which propagates to the periphery of the damaged region. The circular crack is located at the rim of the crater. The damage morphology induced by 10 ns laser is surface layer damage. The periodic linear waves are generated due to the interference between the incident beam and the scattered beam. The spacing of the ripples is 1.54 μm which is close to the incident laser wavelength 1.064 μm. The linear crack is located at the center of the damaged region. Furthermore, for the same laser energy density, the dimension of the damaged region and the crater depth induced by 2 ms laser are greater than that of 10 ns laser. It indicates that the damage mechanism under millisecond pulse laser irradiation is strongly different from the case of nanosecond pulse laser.  相似文献   

9.
Metal thin film ablation with femtosecond pulsed laser   总被引:2,自引:0,他引:2  
Micromachining thin metal films coated on glass are widely used to repair semiconductor masks and to fabricate optoelectrical and MEMS devices. The interaction of lasers and materials must be understood in order to achieve efficient micromachining. This work investigates the morphology of thin metal films after machining with femtosecond laser ablation using about 1 μm diameter laser beam. The effect of the film thickness on the results is analyzed by comparing experimental images with data obtained using a two-temperature heat transfer model. The experiment was conducted using a high numerical aperture objective lens and a temporal pulse width of 220 fs on 200- and 500-nm-thick chromium films. The resulting surface morphology after machining was due to the thermal incubation effect, low thermal diffusivity of the glass substrate, and thermodynamic flow of the metal induced by volumetric evaporation. A Fraunhofer diffraction pattern was found in the 500-nm-thick film, and a ripple parallel to the direction of the laser light was observed after a few multiple laser shots. These results are useful for applications requiring micro- or nano-sized machining.  相似文献   

10.
The eigen-oscillation mode of the Nd:YAP cw laser has been analysed. The influence of thermal effects arising from the pumping process on the output character of the 1.3414 μm Nd:YAP cw laser has been discussed. The crack problem of the reflective film at a 1.34 μm dielectric mirror has been solved. Based on the aforementioned work, we have been able to achieve an 82.8 W laser output at 1.3414 μm with a nearly polarized beam from a 5.8 mm diameter by 111 mm Nd:YAP rod. The overall efficiency and the slope efficiency are 1.15% and 2.02% respectively, and the fluctuation of the output power at 62 W is less than 1% during continuous operation for 45 min.  相似文献   

11.
Single CO2 laser pulses, of 10.6μm wavelength, are used to form blind microvias (holes in electronic boards for through-plating conducting paths) in copper-clad epoxy-glass laminates. The microvia dimensions depend on pulse energy and duration, the thicknesses of the epoxy-glass laminate and copper cladding, and the distribution of glass within the epoxy-glass laminate. The useful range of laser parameters, especially pulse energy, is primarily determined by the ability to metallize subsequently the blind microvias. Several conclusions can be drawn from the data. The pulse enegy should be within ±20% of the optimum value in order to form vias with a cylindrical geometry. For 300 μm thick laminates, the thickness of the copper on the bottom should be 18 μm or more. A larger range of pulse energies could be used if the glass fibre density was more uniform and if subsequent copper metallization of the blind vias could be improved.  相似文献   

12.
薄膜内的杂质粒子极易诱导薄膜损伤,研究了金属粒子诱导HfO2薄膜损伤的特征,并基于金属粒子的热力学过程进行了分析。金属粒子对激光的强烈吸收将引起薄膜的熔化、气化以及电离,从而引起薄膜的剥离和脱落,形成圆状坑点;金属粒子对激光的吸收、热扩散以及热膨胀效应与其尺寸等密切相关;从温升规律分析,在相同激光能量辐照下,粒子大小引起的温升不同,从而形成大小不一的点坑状破坏点,且存在一个温升效应最强的粒径,最易引起薄膜的损伤;从金属粒子激光等离子体的辐射效应分析,金属粒子的辐射谱主要集中在紫外部分,辐射光子能量比入射激光光子能量强,具有更强的电离能力,从而加剧了薄膜的去除。  相似文献   

13.
The surface damage experiments of gallium arsenide (GaAs) single crystal irradiated by 1.06 and 0.53 μm nanosecond irradiations are carried out with fundamental and frequency-doubled Nd:YAG laser, respectively. The surface damage thresholds for both wavelengths are experimentally determined and the damaged morphologies and elementary component are analyzed with electron probe microanalyzer (EPM). It is found that the components of Ga and As almost keep constant in our experiments when the irradiated fluence is just around the surface damage threshold and no oxygen is found at all. The theoretical calculations on temperature rise for both wavelengths are carried out using the purely thermal model. It is shown that for irradiation with photon energy above the corresponding band gap the theoretical calculation is in good agreement with the experimental results; however, for that with photon energy just below the band gap, the experimental results cannot be effectively explained by the purely thermal heating mechanism. Combining with the experiment of multi-shot damage from references we finally conclude that the damage by laser irradiation with photon energy below the band gap should be explained by the micro-defect accumulation and consequently enhanced absorption heating mechanism.  相似文献   

14.
Polycrystalline copper film microstructures produced by laser melting and rapid lateral solidification are analyzed using transmission electron microscopy. The microstructure is predominantly composed of directionally solidified grains up to 22 μm long and 1 μm wide lying in the plane of the film. We identify four morphologically solidification zones, corresponding to occlusion, steady lateral growth, defective growth, and nucleation. Electron diffraction analysis indicates clustering of 1 0 0 orientations around the direction of solidification for the grains in the steady lateral growth zone. Simple estimates of solidification times based on heat flow modeling and a critical nucleation temperature suggest that interface velocities of several hundred m/s may be attained during solidification.  相似文献   

15.
This paper presents a very simple unstable resonator, made of a concave mirror (total reflector) and a bare plane–convex BK7 lens working as a convex coupling mirror, which is quite efficient for HyBrID copper laser. In addition to a good quality factor (M2=4.9), experimental results showed that it is possible to control the laser output power by introducing a variable aperture iris inside the cavity, close to the coupling lens, without spoiling beam quality. A rough theoretical model helped to explain these results as a combined effect of unstable resonator plus radial gain distribution.  相似文献   

16.
Surface acoustic waves guided by a copper line embedded in a silica film on a silicon wafer were generated and detected optically using the laser-induced transient grating technique. Lines as narrow as ∼0.2 μm yield a good signal despite the much larger size of the laser spot. The phase velocity of the guided mode is slightly lower than the surface acoustic wave velocity in the thin film structure. Good correlation between the acoustic frequency and the electrical resistivity of the copper lines results from the dependence of both measurements on the line width.  相似文献   

17.
We made considerations for microstructures on chromium film observed after femtosecond laser irradiation through an analytical study. Laser diffraction through an optical system with a rectangular aperture was analyzed for the estimation of intensity distribution at the focal point. Molecular dynamics (MD) simulation was also performed for the examination of laser ablation of metal by taking account of the electron–phonon relaxation. From results of diffraction calculation, it was shown that a typical surface pattern is significantly affected by laser intensity distribution. On the other hand, it may be estimated through the MD simulation that the porosity formation evolves by cumulative pulses with energy close to the ablation threshold and their surrounding grows to microcolumns with volume expansion. PACS 68.08.De; 68.35.-p  相似文献   

18.
Mathematical modeling of laser induced heating and melting in solids   总被引:11,自引:0,他引:11  
An analytical method for treating the problem of laser heating and melting is developed in this paper. The analytical method has been applied to aluminum, titanium, copper, silver and fused quartz and the time needed to melt and vaporize and the effects of laser power density on the melt depth for four metals are also obtained. In addition, the depth profile and time evolution of the temperature of aluminum before melting and after melting are given, in which a discontinuity in the temperature gradient is obviously observed due to the latent heat of fusion and the increment in thermal conductivity in solid phase. Additionally, the calculated melt depth evolution of fused quartz induced by 10.6 μm laser irradiation is in good agreement with the experimental results.  相似文献   

19.
Laser damage in silicon has been investigated using single crystals of p-type Si with thin wafers of 0.325 mm thickness being exposed to Nd3+ laser pulses. The laser was in a free generation mode, with wavelength 1.064 μm, and pulse duration time of 100 μs, with energy of 200 mJ pulse-1. It was found that this energy caused visible damage at the sample surface, which is interesting topographically and from viewpoint of the theory of the interaction of laser light and solid dielectric matter.  相似文献   

20.
 液晶光学器件在激光光束精密控制上具有重要应用前景,氧化铟锡(ITO)薄膜作为液晶光学器件的透明导电电极,是液晶器件激光损伤的薄弱环节。为此,建立了ITO薄膜激光热损伤物理模型。理论计算结果表明:1 064 nm激光对ITO薄膜的损伤主要为热应力损伤;连续激光辐照下,薄膜损伤始于靠近界面的玻璃基底内;脉冲激光辐照下,温升主要发生在光斑范围内的膜层,薄膜损伤从表面开始。利用泵浦探测技术,研究了ITO薄膜的损伤情况,测量了不同功率密度激光辐照后薄膜的方块电阻,结合1-on-1法测定了ITO薄膜的50%损伤几率阈值。实验结果表明:薄膜越厚,方块电阻越小,激光损伤阈值越低;薄膜未完全损伤前,方块电阻随激光功率密度的增加而增大。理论计算与实验结果吻合较好。设计液晶光学器件中的ITO薄膜电极厚度时,应综合考虑激光损伤、透光率及薄膜电阻的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号