首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
The effect of polymer-polymer interactions on the miscibility and macroscopic properties of PVC/PMMA, PVC/PS and PMMA/PS blends were studied in the entire composition range. The miscibility of the components was characterized by the Flory-Huggins interaction parameter or by quantities related to it. Thermal analysis, light transmittance measurements, and scanning electron microscopy were carried out on the blends and their mechanical properties were characterized by tensile tests. Interactions were analyzed by infrared spectroscopy and contact angle measurements. All three polymer pairs form heterogeneous blends, but the strength of molecular interactions is different in them, the highest is in PVC/PMMA system resulting in partial miscibility of the components and beneficial mechanical properties. The structure of these blends depends strongly on composition. A phase inversion can be observed between 0.5 and 0.6 PMMA content accompanied with a significant change in structure and properties. The PVC/PS and the PMMA/PS pairs are immiscible, though the results indicate the partial solubility of the components. The analysis of the surface characteristics of the components and the comparison of quantities derived from them with miscibility as well as with the macroscopic properties of blends revealed that blend properties cannot be predicted in this way, since they are affected by several factors.  相似文献   

2.
3.
In this work blends of poly(ethylene-co-vinyl alcohol) (EVOH) with different ethylene contents (27, 32, 38 and 44 mol%) and poly(methyl methacrylate) (PMMA) were prepared by mechanical mixing in the melted state. The miscibility and melting behavior as a function of blend composition and the ethylene content in EVOH copolymers were investigated by means of differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The morphology of the cryofractured surfaces was examined by scanning electron microscopy (SEM). DSC and DMTA data show that EVOH/PMMA blends are immiscible, independent of EVOH and blend composition. The SEM analysis in agreement with DMTA analysis indicates that the morphology of phases depends on the blend composition, with phase inversion occurring as the concentration of one or other polymer component increases. However, the copolymer composition apparently does not affect the domain size distribution for blends containing 20 wt% of EVOH or 20 wt% of PMMA. A better phase adhesion is observed mainly for blends with 50 wt% of each polymer component.  相似文献   

4.
This paper describes the first use of polymer-coated quantum dots (QDs) as fluorescent tracers for LSCFM imaging of phase morphology in polymer blends. Cadmium sulfide (CdS) QDs stabilized at the surface with a PS-b-PAA block copolymer are shown to be well dispersed via their polystyrene (PS) brush layer in the PS phase of solvent-cast 40/60 (w/w) PS/PMMA blends. The QDs are excluded from the PMMA phase, providing excellent fluorescence contrast for LSCFM imaging of the phase-separated blends. The presence of PS-b-PAA-stabilized QDs does not appear to affect the blend morphology, since the observed morphologies are the same when the percentage of QDs within the PS phase is varied from 10 to 50 wt %. These QD fluorescent tracers are used to characterize several aspects of blend morphology in solvent-cast 40/60 PS/PMMA blends containing PS homopolymer with either 100 (low molecular weight) or 1250 (high molecular weight) repeat units. In the PS(1250)/PMMA blends, a percolating distribution of PMMA droplets (2-25 mum) in a PS matrix is observed in the bulk, and a distinct inversion in the continuous phase is found near the glass substrate. In the PS(100)/PMMA blends, a "phase-in-phase" morphology is found, consisting of large PS domains (20-100 mum) dispersed in a PMMA continuous phase and small PMMA domains (1-2 mum) scattered throughout the larger PS droplets. The observed change in blend structure is attributed to a lower interfacial tension for the lower molecular weight PS.  相似文献   

5.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

6.
This paper reports on the interfacial behaviour of block and graft copolymers used as compatibilizers in immiscible polymer blends. A limited residence time of the copolymer at the interface has been shown in both reactive blending and blend compatibilization by preformed copolymers. Polystyrene (PS)/polyamide6 (PA6), polyphenylene oxide (PPO)/PA6 and polymethylmethacrylate (PMMA)/PA6 blends have been reactively compatibilized by a styrene-maleic anhydride copolymer SMA. The extent of miscibility of SMA with PS, PPO and PMMA is a key criterion for the stability of the graft copolymer at the interface. For the first 10 to 15 minutes of mixing, the in situ formed copolymer is able to decrease the particle size of the dispersed phase and to prevent it from coalescencing. However, upon increasing mixing time, the copolymer leaves the interface which results in phase coalescence. In PS/LDPE blends compatibilized by preformed PS/hydrogenated polybutadiene (hPB) block copolymers, a tapered diblock stabilizes efficiently a co-continuous two-phase morphology, in contrast to a triblock copolymer that was unable to prevent phase coarsening during annealing at 180°C for 150 minutes.  相似文献   

7.
Sum frequency generation (SFG) vibrational spectroscopy has been applied to study the molecular surface structures of polystyrene (PS)/poly(methyl methacrylate) (PMMA) blends and the copolymer between PS and PMMA (PS-co-PMMA) in air, supplemented by atomic force microscopy (AFM) and contact angle goniometer. Both the blend and the copolymer have equal weight amounts of the two components. SFG results show that both components, PS and PMMA, can segregate to the surface of the blend and the copolymer before annealing, although PMMA has a slightly higher surface tension. Upon annealing both SFG results and contact angle measurements indicate that the PS segregates to the surface of the PS/PMMA blend more but no change occurs on the PS-co-PMMA surface. AFM images show that the copolymer surface is flat but the 1:1 PS/PMMA blend has a rougher surface with island like domains present. The annealing effect on the blend surface morphology has also been investigated. We collected amide SFG signals from interfacial fibrinogen molecules at the copolymer or blend/protein solution interfaces as a function of time. Different time-dependent SFG signal changes have been observed, showing that different surfaces of the blend and the copolymer mediate fibrinogen adsorption behavior differently.  相似文献   

8.
研究了玻璃基板作用下极性高聚物为低组分的共混物薄膜在退火条件下相形态的发展过程 .选用聚苯乙烯 (PS) 聚甲基丙烯酸甲酯 (PMMA)与聚苯乙烯 (PS) 聚ε 己内酯 (PCL)两个体系 ,在玻璃基板上Spin Coating成膜后退火 .由于共混物薄膜中极性相对较大的高聚物组分 (PMMA和PCL)相对于极性较小的PS组分对玻璃基板具有更好的润湿性 ,所以在上述的两个共混薄膜体系中其相形态分别显示PMMA和PCL在低组分比例下最终发展成为连续相 .利用扫描电镜以及元素分析很好地验证了以上的结论 ,并且对其机理进行了解释 .此外 ,改变PS的分子量与PCL共混 ,研究了组分粘度对薄膜相形态发展的影响 .结果表明 ,PS组分粘度越大 ,共混物薄膜相结构发展速度越慢  相似文献   

9.
The potential of polystyrene/polymethylphenylsiloxane (PS/PMPS) blends as a matrix for nanocomposites is investigated. It was proven by dynamic rheometry and conductivity measurements that PMPS effectively disperses carbon nanotubes, as was already known for polydimethylsiloxane (PDMS). The phase behaviour of PS/PMPS blends was investigated using differential scanning calorimetry or modulated temperature differential scanning calorimetry. The blends were found to exhibit partial miscibility, in contrast to the known immiscible behaviour of PS/PDMS blends. A miscibility window exists for PS/PMPS blends containing less than approximately 10 wt% PMPS.  相似文献   

10.
Poly(vinyl chloride)/Poly(methyl methacrylate) — PVC/PMMA — blends were investigated by comparative p-V-T and differential scanning calorimetry (DSC) measurements. The study was concentrated on the glass transition range of the blends, and it was found that the blends are characterized by a single glass transition temperature suggesting miscibility of the blend components. It is shown that the glass temperature of the blends increases with both increasing heating rate and pressure. In parallel hereto one observes a decrease in the volume expansion coefficients, which is more accentuated for the polymeric melts than for the polymeric glasses. The dependence of the glass temperature on the composition of the polymer blends shows a sigmoidal behaviour which is due to the fact that positive deviations of the glass temperature from values predicted by additivity rules are observed in the high PVC concentration range, whereas in the high PMMA range negative deviations occur. This suggests a denser packing of the blends and thus a stronger interaction between the blend components in the high PVC concentration range. These packing differences increase with increasing pressure and decreasing heating rate and are generally more accentuated for the glass temperatures evaluated from p-V-T measurements.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

11.
利用分子内链段排斥性相互作用理论研究了聚碳酸酯 (PC) 苯乙烯 丙烯腈共聚物 (SAN)共混体系中组份分子量及SAN共聚比例对体系相容性的影响规律 ,确定了获得均相的PC SAN共混体系的条件 ,考察了体系相容性与光学性能之间的关系 .通过实验获得了均相的PC SAN共混物 ;研究结果表明PC聚合度为 90、SAN聚合度为 3 0的PC SAN(S体积含量为 68%)体系共混比在 60∶40附近时体系的双折射能够实现补偿 ,紫外透光率达到 70 %.  相似文献   

12.
In this study, we investigated the miscibility behavior and mechanism of interaction of poly(methyl mechacrylate) (PMMA), poly(vinyl pyrrolidone) PVP, and PMMA- co-PVP blends with octa(phenol)octasilsequioxane (OP-POSS). For the PMMA/OP-POSS binary blend, the value of the association constant ( K A = 29) was smaller than that in the poly(vinyl phenol) (PVPh)/PMMA ( K A = 37.4) and ethyl phenol (EPh)/PMMA ( K A = 101) blend systems, implying that the phenol groups of the OP-POSS units in the PMMA/OP-POSS blends interacted to a lesser degree with the CO groups of PMMA than they did in the other two systems. In addition, the ionic conductivity of a LiClO4/PMMA- co-PVP polymer electrolyte was increased after blending with OP-POSS.  相似文献   

13.
对聚碳酸酯(PC)/苯乙烯 丙烯腈无规共聚物(PSAN)/聚甲基丙烯酸甲酯(PMMA)三元共混物,运用平均场理论,通过二元链段相互作用参数χij计算了其中三个二元对共混组成的相互作用参数χblend,并计算了三元共混体系的spinodal曲线.由此预测了三元共混物相容的条件,讨论了PSAN组成,各聚合物分子量对体系相容性的影响,并进行了实验验证.结果表明通过适当控制共聚组成和分子量,PSAN可以作为PC和PMMA共混物的增容剂,并可以通过仅改变PSAN在共混物中的比例来改善体系的相容性,直至得到完全均相的三元共混物.  相似文献   

14.
在不同的共混比例、不同的结晶温度下对不相容PHBV/PS、PHBV/PMMA结晶/非晶共混体系的结晶行为做了系统的研究.研究发现当PHBV含量为75wt%时,共混体系仍然和纯PHBV一样生成环带球晶;而当PHBV含量为50wt%时,共混体系在略低于非晶组分玻璃化转变温度时呈现花瓣状的球晶形貌;当PHBV含量为25wt%时,PHBV/PS体系出现不规则的晶体形貌,而PHBV/PMMA体系在偏光显微镜下没有观察到晶体.在这种不相容共混体系中,非晶组分的分散状态以及共混比例对共混体系中PHBV环带球晶的形成起到决定性的作用,而非晶组分对PHBV球晶的片晶前端生长的影响是形成花瓣状球晶的主要原因.  相似文献   

15.
张运湘  宋义虎  郑强 《高分子学报》2012,(12):1364-1370
采用熔融共混法制备聚偏氟乙烯/聚甲基丙烯酸甲酯( PVDF/PMMA)共混物,考察其力学性能、耐紫外老化性能、熔体动态流变、结晶与热分解行为.PMMA含量(wPMMA)为10 wt%时,共混物形成均相结构,力学与耐老化性能最好.wPMMA≥20 wt%时,PMMA形成球状聚集体,共混物力学性能与耐候性显著降低.PMMA的存在可提高PVDF的结晶度,降低熔融温度,但不改变PVDF晶体结构.  相似文献   

16.
The miscibility of styrene-hydrogenated butadiene copolymer (SHB) with different constituents of polymer additives for lubricating mineral oils was studied in dilute solution regime, using xylene as model solvent, at 30 °C, in a wide range of polymer blend compositions. The systems studied were SHB/poly(ethylene-co-propylene) (EPC), SHB/poly(methyl methacrylate) (PMMA), SHB/poly(dodecyl methacrylate) (PDDMA) and SHB/polystyrene (PS). The viscometric interaction parameters were calculated according to the Krigbaum–Wall and Catsiff–Hewett models of ideal viscometric behavior. Strong repulsive interactions were found in SHB/PMMA and SHB/PDDMA systems pointing to immiscibility. SHB/EPC and SHB/PS deviated much less from ideality. The results were compared to the theoretical estimation of interaction in polymer blends in the absence of solvent, using the Coleman–Graf–Painter approach. No correlation was observed between the interaction in the bulk and in solution.  相似文献   

17.
The differential orientation of polymer chains has been measured in polystyrene (PS)/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) compatible blends. Density measurements are reported as a function of binary blend composition at 23°C. Drawing was performed by solid-state coextrusion. PS/PPO blend compositions of 90/10 and 75/25 were drawn within sandwiches of polyethylene at 145°C and isotactic polypropylene at 155°C, i.e. at ca. 25°C above the glass transition temperatures of the two blends. The change in Fourier-transform infrared dichroisms on drawing these blends was measured at 906 and 1190 cm?1, corresponding to predominantly PS and PPO, respectively. The orientation of PS and PPO was observed as a function of draw ratio λ in the range 1–5; orientations increased with λ for both PS and PPO in both blends but to different degrees. Both polymers decreased in orientation with increasing PPO content. Annealing with fixed ends showed that the PPO chains disorient more slowly than those of PS. All binary systems were found to be amorphous and compatible.  相似文献   

18.
A novel route for producing polymer blends by reactive extrusion is described, starting from poly (vinyl chloride)/methyl methacrylate (PVC/MMA) dry blend and successive polymerization of MMA in an extruder. Small angle X‐ray scattering (SAXS) measurements were applied to study the monomer's mode of penetration into the PVC particles and to characterize the supermolecular structure of the reactive poly(vinyl chloride)/poly(methyl methacrylate) (PVC/PMMA) blends obtained, as compared to the corresponding physical blends of similar composition. These measurements indicate that the monomer molecules can easily penetrate into the PVC sub‐primary particles, separating the PVC chains. Moreover, the increased mobility of the PVC chains enables formation of an ordered lamellar structure, with an average d‐spacing of 4.1 nm. The same characteristic lamellar structure is further detected upon compression molding or extrusion of PVC and PVC/PMMA blends. In this case the mobility of the PVC chains is enabled through thermal energy. Dynamic mechanical thermal analysis (DMTA) and SAXS measurements of reactive and physical PVC/PMMA blends indicate that miscibility occurs between the PVC and PMMA chains. The studied reactive PVC/PMMA blends are found to be miscible, while the physical PVC/PMMA blends are only partially miscible. It can be suggested that the miscible PMMA chains weaken dipole–dipole interactions between the PVC chains, leading to high mobility and resulting in an increased PVC crystallinity degree and decreased PVC glass transition temperature (Tg). These phenomena are shown in the physical PVC/PMMA blends and further emphasized in the reactive PVC/PMMA blends. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The miscibility of polylactic acid (PLA) and atactic poly(methyl methacrylate) (PMMA) blends is investigated as a function of composition. The blends quenched from the melt show the presence of a single glass transition temperature dependent on the composition. The equilibrium melting temperature is determined using the Hoffman‐Weeks method and a depression is observed with increasing content of the PMMA component. The PLA spherulite growth rate and the overall isothermal crystallization rates decrease with increasing the amount of the amorphous component. The increase of the long period value as a function of the PMMA content in the blend is due to the segregation of PMMA component in the amorphous PLA interlamellar regions. The Lauritzen‐Hoffman secondary nucleation theory analysis shows that the segregation of the PMMA in the interlamellar region induces an increase in the surface entropy of folding. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1168–1177  相似文献   

20.
聚苯乙烯,聚甲基丙烯酸甲酯对聚氯乙烯/氯化聚乙烯共混体流变性的影响杨文君,吴其晔,杜华(青岛化工学院高分子材料系,青岛,266042)王建民,李应华,张宝善(齐鲁石化研究院,淄博,255434)关键词塑料改性,流变性,聚氯乙烯,氯化聚乙烯,刚性粒子我...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号