首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The influence of organic supports on the polymerization behavior of post‐metallocene catalysts is studied and compared with similarly supported titanium and zirconium metallocenes. The effects of the immobilization, activation, and polymerization process were studied by video microscopy, laser confocal fluorescence microscopy, SEM, and TEM. A model for the polymerization process for a catalyst supported on latex particles was developed from the results obtained. Organic supports based on latex particles are easily adjustable for different catalysts due to the versatile functionalization of the surfaces and can be applied to different types of olefin polymerization catalysts. They can be considered as an alternative to SiO2 or MgCl2 supports.

  相似文献   


2.
Abstract

The stability of acrylic latices stabilized by poly(ethylene oxide) (PEO) is governed by the bridging flocculation process during polymerization. The final latex particle size increases with increasing concentration of initiator, PEO, or NaCl. The total scrap formed during the reaction increases rapidly with increasing NaCl concentration due to the ionic strength effect. It is shown that the final latex particle size decreases rapidly with an increase in the agitation speed. The amount of total scrap formed during polymerization is generally greater at a higher agitation speed. These results suggest that the fraction of the particle surface covered by PEO and the ratio of the thickness of the PEO adsorption layer to that of the electric double layer of the latex particles should play an important role in determining the final latex particle size and colloidal stability.  相似文献   

3.
A series of linear and lightly crosslinked nanostructured latices was prepared by a sequential multistage semicontinuous emulsion polymerization process alternating styrene (S) and n‐butyl acrylate (BA) monomer feeds five times, that is ten stages, and vice versa, along with several control latices. Transmission electron micrographs of the RuO4‐stained cross sections of nanostructured and copolymer latex particles and films showed that their particle morphologies were not very different from each other, but the nanostructured latex particles were transformed into a nanocomposite film containing both polystyrene (PS) and poly(n‐butyl acrylate) (PBA) nanodomains interconnected by their diffuse polymer mixtures (i.e. interlayers). The thermal mechanical behaviors of the nanostructured latex films showed broad but single Tgs slightly higher than those of their counterpart copolymer films. These single Tgs indicated that their major component phases were the diffuse interlayers and that they behaved like pseudopolymer alloys. The minimum film formation temperatures of nanostructured latices capped with PBA and PS, respectively, were 15 °C lower than and equal to those of their counterpart copolymer latices, but their Tgs were about 10 °C higher. Consequently, nanostructured latices enabled us to combine good film formation with high strengths for adhesives and coatings applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2826–2836, 2006  相似文献   

4.
Dialkylzinc compounds (ZnR2) with the alkyl groups of different steric hindrance were used as chain transfer agents in ethylene and propylene polymerizations catalyzed by two conventional metallocene catalysts including rac-Et(Ind)2ZrCl2 and rac-Me2Si[2-Me-4-Ph-Ind]2ZrCl2. In general, catalyst activities for ethylene polymerizations are barely affected by chain transfer agents, regardless of the R type; however, there are significant activity reductions in propylene polymerizations when the R in ZnR2 is less hindered, and as R becomes bulkier, catalyst activities are gradually restored. ZnR2 and metallocene catalyst active site tend to form a reversible and catalytically inactive complex, thus the geometry congested ZnR2 would reduce complex formation tendency and hence decreased its negative effect on catalyst activities.  相似文献   

5.
A series of Me4Cp–amido complexes {[η51‐(Me4C5)SiMe2NR]TiCl2; R = t‐Bu, 1 ; C6H5, 2 ; C6F5, 3 ; SO2Ph, 4 ; or SO2Me, 5 } were prepared and investigated for olefin polymerization in the presence of methylaluminoxane (MAO). X‐ray crystallography of complexes 3 and 4 revealed very long Ti N bonds relative to the bonds of 1 . These complexes were employed for ethylene–styrene copolymerizations, styrene homopolymerizations, and propylene homopolymerizations in the presence of MAO. The productivities of the catalysts derived from 3 – 5 were much lower than the productivity of the catalyst derived from 1 for the propylene polymerizations and ethylene–styrene copolymerizations, whereas the styrene polymerization activities were much higher for the catalysts derived from 3 – 5 than for the catalyst derived from 1 . The polymerization behavior of the catalysts derived from the metallocenes 3 – 5 were more reminiscent of monocyclopentadienyl titanocene Cp′TiX3/MAO catalysts than of CpATiX2/MAO catalysts such as 1 containing alkylamido ligands. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4649–4660, 2000  相似文献   

6.
Dialkylzinc compounds (ZnR2) with the alkyl groups of different steric hindrance were used as chain transfer agents in ethylene and propylene polymerizations catalyzed by two conventional metallocene catalysts including rac-Et(Ind)2ZrCl2 and rac-Me2Si[2-Me-4-Ph-Ind]2ZrCl2. In general, catalyst activities for ethylene polymerizations are barely affected by chain transfer agents, regardless of the R type; however, there are significant activity reductions in propylene polymerizations when the R in ZnR2 is less hindered, and as R becomes bulkier, catalyst activities are gradually restored. ZnR2 and metallocene catalyst active sites tend to form a reversible and catalytically inactive complex, thus, the geometry congested ZnR2 would reduce complex formation tendency and hence, decrease its negative effect on catalyst activities.  相似文献   

7.
Gamma ray induced seeded emulsion co-polymerization of styrene and butyl acrylate was carried out in the presence of polymerizable polysiloxane seed latex which was obtained by the ring opening co-polymerization of octamethyl cyclotetrasiloxane (D4) and tetramethyl tetravinyl cyclotetrasiloxane (VD4) catalyzed by dodecylbenzene sulphonic acid (DBSA). A series of polysiloxane seed latices with different molecular weight, vinyl content, and particle size were used. The conversion-time curve showed that the polymerization rate was accelerated much by the seed latex. The obtained composite latices also showed good storage stability, mechanical stability and high electrolyte resistance ability. The morphology of the composite latex particles was found to be a quite uniform fine structure by transmission electron microscope (TEM). The graft polymerization between polymerizable polysiloxane and butyl acrylate or styrene was confirmed by the Fourier transform infrared spectroscopy (FT-IR) and the graft efficiency was also studied. The influence of seed content, molecular weight, vinyl content of the polysiloxane and seed latex particles size to the mechanical performance, water absorption ratio, surface properties, transparency and UV resistance of the latex films, was also investigated.  相似文献   

8.
Using core‐first strategy, the amphiphilic A4B4 star‐shaped copolymers [poly(ethylene oxide)]4[poly(ε‐caprolactone)]4 [(PEO)4(PCL)4], [poly(ethylene oxide)]4[poly(styrene)]4 [(PEO)4(PS)4], and [poly(ethylene oxide)]4[poly(tert‐butyl acrylate)]4 [(PEO)4(PtBA)4] were synthesized by mechanisms transformation combining with thiol‐ene reaction. First, using a designed multifunctional mikto‐initiator with four active hydroxyl groups and four allyl groups, the four‐armed star‐shaped polymers (PEO‐Ph)4/(OH)4 with four active hydroxyl groups at core position were obtained by sequential ring‐opening polymerization (ROP) of ethylene oxide monomers, capping reaction of living oxyanion with benzyl chloride, and transformation of allyl groups into hydroxyl groups by thiol‐ene reaction. Then, the A4B4 star‐shaped copolymers (PEO)4(PS)4 or (PEO)4(PtBA)4 were obtained by atom transfer radical polymerization (ATRP) of styrene or tert‐butyl acrylate (tBA) monomers from macroinitiator of (PEO‐Ph)4/(Br)4, which was obtained by esterification of (PEO‐Ph)4/(OH)4 with 2‐bromoisobutyryl bromide. The A4B4 star‐shaped copolymers (PEO)4(PCL)4 were also obtained by ROP of ε‐caprolactopne monomers from macroinitiator of (PEO‐Ph)4/(OH)4. The target copolymers and intermediates were characterized by size‐exclusion chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectroscopy, and nuclear magnetic resonance in detail. This synthetic route might be a versatile one to various AnBn (n ≥ 3) star‐shaped copolymers with defined structure and compositions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4572–4583  相似文献   

9.
The applicability of latex particle supports for non‐Cp type metallocene catalysts for ethylene polymerization is presented. Polystyrene latex particles were prepared by miniemulsion polymerization and functionalized with poly(ethyleneoxide)chains and pyridyl groups on the surface. These latex particles were chosen to demonstrate that a support with nucleophilic substituents on the surface can act as a carrier for a (phenoxy‐imine) titanium complex (titanium FI‐catalyst) to produce ultrahigh molecular weight polyethylene (UHMWPE). The composition of the support, the concentration of pyridyl groups on the surface, and the crosslinking of the support were optimized to provide a system where the FI‐catalyst resulted in the formation of polyethylene with a Mw of more than 6,000,000 and a relatively narrow molecular weight distribution of 3.0 ± 0.5. High activities for long polymerization times greater than 6 h resulted in a catalyst system exhibiting productivities of up to 15,000 g PE/g cat. or 7,000,000 g PE/g Ti. The resulting polymer properties showed that nucleophilic groups on the latex particle support did not negatively impact the catalyst by blocking the active site but instead created a stable environment for the titanium catalyst. In particular, pyridyl groups on the surface of the latex particle stabilized the catalyst system probably by trapping trimethylaluminium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3103–3113, 2006  相似文献   

10.
Preparation of microlatex dispersions using oil-in-water microemulsions   总被引:1,自引:0,他引:1  
The preparation of microlatex dispersions from microemulsions of a monomer (styrene, methylmethacrylate or vinyl acetate) is described. A simple method for preparing the microemulsion has been devised. This consists of forming a water-in-oil (w/o) emulsion using a low (HLB) surfactant (nonylphenol with 5, 6 or 7 moles ethylene oxide) and then titrating with an aqueous solution of a high HLB surfactant (nonylphenol with 15 or 16 moles ethylene oxide). A small amount of anionic surfactant (sodium lauryl sulphate, sodium dodecyl benzene sulphonate or dioctyl sulphosuccinate) was also incorporated to enhance the stability of the w/o emulsion and facilitate the inversion to an o/w microemulsion. The droplet-size distribution of the resulting microemulsion was determined using photon-correlation spectroscopy.Three different methods of polymerising the microemulsion were used. These were thermally induced polymerisation using potassium persulphate, azobis-2-methyl propamidinium dichloride (AMP-water-soluble initiators) or azobisisobutyronitrile (AIBN, an oil-soluble initiator). All these initiators required heating to 60°C, i.e. above the stability temperature of the microemulsion. In this case, the microlatices produced were fairly large (37–100 nm diameter) and had a broad particle-size distribution. The second polymerisation procedure was chemically induced using a redox system of hydrogen peroxide and ascorbic acid. This produced microlatices with small sizes (18–24 nm diameter) having a narrow-size distribution. The microlatex size was roughly two to three times the size of the microemulsion droplets. This showed that collision between two or three microemulsion droplets resulted in their coalescence during the polymerisation process. The third method of polymerisation was based on UV irradiation in conjunction with K2S2O8, AMP or AIBN initiators. In this case, the microlatex size was also small (30–63 nm) with a narrow particle-size distribution.Microlatex particles were also prepared using a mixture of monomers (styrene plus methylmethacrylate) or mixture of monomers and a macromonomer, namely methoxy (polyethylene glycol)methacrylate. The latter was used to produce hairy particles, i.e. with grafted polyethylene oxide (PEO) chains.The stability of the microlatices was determined by adding electrolytes (NaCl, CaCl2, Na2SO4 or MgSO4) to determine the critical flocculation concentration (CFC). The nonionic latices were very stable giving no flocculation up to 6 mol dm–3 NaCl or CaCl2 and a CFC of 0.6 mol dm–3 for Na2SO4 or MgSO4. Charged latices were less stable than the nonionic ones. The critical flocculation temperatures (CFT) of all latices were determined as a function of electrolyte concentration. With the nonionic latices, CFC was higher than the -temperature for polyethylene oxide at the given electrolyte concentration. This indicated enhanced steric stabilisation as a result of the dense packing of the chains and hence an elastic contribution to the steric interaction. This was not the case with the charged latex, which showed CFT values lower than the -temperature. The hairy latices [i.e. those containing methoxy polyethylene glycol (PEG) methacrylate] were also less stable towards electrolyte (CFT was much lower than -temperature), indicating a low density of PEO layers.  相似文献   

11.
Three manganese complexes, Mn(acac)3 (acac = acetylacetonate), Cp2Mn (Cp = cyclopentadienyl), and Mn(salen)Cl [salen = 1,2‐cyclohexanediamino‐N,N′‐bis(3,5‐dit‐butyl‐salicylidene)], were used for ethylene and propylene polymerizations. These complexes, in combination with an alkylaluminum cocatalyst such as methylaluminoxane (MAO) or diethyl aluminum chloride (AlEt2Cl), could promote ethylene polymerizations that yielded extremely high molecular weight linear polymers, but were inactive for propylene polymerizations. The counterparts supported on MgCl2 showed activities even for propylene polymerizations and had remarkably enhanced activities for ethylene polymerizations. In the presence of an electron donor such as ethylbenzoate, the MgCl2‐supported manganese‐based catalysts yielded a highly isotactic polypropylene with a high molecular weight. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3733–3738, 2001  相似文献   

12.
Graphene oxide (GO) supported transition metal complexes are apprised as sturdy and everlasting heterogeneous catalysts. GO surface was functionalized with 3-triethoxysilylpropylamine (TSPA) and this amino functionalized GO (A-f-GO) nanocomposite with vanadyl Schiff base complex (VO-f-GO) was prepared and to give credence of its potentiality, it was chosen for the selective epoxidation of styrene using environmentally benign 30% H2O2 to styrene oxide (SO). To evade the detrimental exposure of “inborn” water, a selective high boiling and potent hygroscopic solvent, ethylene glycol was chosen to make this transformation productively successful. With the assistance of theoretical studies, we have probed the effect of H2O2 on to structural properties, binding mechanism and electronic properties of the catalyst and substrate. Adsorption energy (Ead), energy band gap (Eg) and HOMO-LUMO were also calculated. Based on DFT calculations, resonance Raman and UV/Vis studies, we confirmed the formation of metal-peroxo species and propose the plausible catalytic pathway. The influence of the diverse experimental parameters, like substrate to oxidant mole ratio, catalyst concentration, type of solvents, solvent amount, time, temperature and oxidant were tested. A clear relationship was found between different reaction parameters like solvent amount, oxidant, catalyst concentration and temperature etc. and product distribution. This heterogeneous catalyst yielded styrene oxide as nearly the sole product (selectivity = 98.7%) with a conversion value of 99.2% in the oxidation of styrene with hydrogen peroxide in ethylene glycol.  相似文献   

13.
The physical forces causing deformation of latex particles during the film formation process have been witley studied. However, the forces resisting particle deformation are still poorly characterized. It is clear that the extent of particle deformation is dependent on the viscoelastic nature of the polymer. In an emulsion, the latex particles will normally contain water, surfactants and “free” monomers which lead to plasticization of the polymer. Although this effect has been recognized, so far it has been studied only on films that had been dried and then partially or completely swollen by water. In this work, plasticization of the emulsion polymers by water and co-solvent has been quantified via differential scanning calorimetry investigation directly on the aqueous latex dispersions. More specifically, the plasticizing effect of water on VeoVa/vinyl acetate copolymer latices and its influence on minimum film-forming temperature (MFFT) has been studied. A linear correlation has been found between Tg and MFFT for the wet latices. This new direct method should help to improve our understanding of the forces resisting latex film formation. Additionally, the homogeneous distribution of the hydrophobic and hydrophilic monomers (VeoVa and vinyl acetate respectively) in the latex particles was verified via a 13C-NMR (nuclear magnetic resonance) study performed directly on the latices. This study confirmed that no significant core/shell type of morphology had influenced latex film formation.  相似文献   

14.
The viscoelastic properties of concentrated microlatex dispersions were investigated using oscillatory measurements. The latices were prepared by polymerisation of styrene-in-water microemulsions using UV and azobiisobutyronitrile initiator. The complex modulus, G*, storage modulus, G′ and loss modulus, G″ were measured as a function of strain amplitude (to obtain the linear viscoelastic region) and frequency at various latex volume fractions. Two latices with radii of 3.9 and 15.1 nm were investigated at 20°C. The results showed a change from predominantly viscous to a predominantly elastic response at a critical volume fraction, φc With the smaller latex, the concentration of the free surfactant in bulk solution was relatively low (2.6%) and the dispersions remained stable. φc was found to be 0.161. Assuming random packing of the particles (volume fraction=0.64), an estimate was obtained for the adsorbed layer thickness and this was found to be 1.4 nm, which is small for a surfactant chain with 15 ethylene oxide units. However, since the surfactant layer is a mixture of chains with 4 and 15 EO units, it is likely that the larger PEO chains will undergo interpenetration and/or compression on close approach of the particles. With the larger latex, on the other hand, there was high free surfactant concentration (9.1%) and this led to depletion flocculation. This results in a lower φc than would be the case in the absence of flocculation.  相似文献   

15.
The incorporation of 5‐vinyl‐2‐norbornene (VNB) into ethylene‐norbornene copolymer was investigated with catalysts [Ph2C(Fluo)(Cp)]ZrCl2 ( 1 ), rac‐[Et(Ind)2]ZrCl2 ( 2 ), and [Me2Si(Me4Cp)tBuN]TiCl2 ( 3 ) in the presence of MAO by terpolymerizing different amounts of 5‐vinyl‐2‐norbornene with constant amounts of ethylene and norbornene at 60°C. The highest cycloolefin incorporations and highest activity in terpolymerizations were achieved with 1 . The distribution of the monomers in the terpolymer chain was determined by NMR spectroscopy. As confirmed by XRD and DSC analysis, catalysts 1 and 3 produced amorphous terpolymer, whereas 2 yielded terpolymer with crystalline fragments of long ethylene sequences. When compared with poly‐(ethylene‐co‐norbornene), VNB increased both the glass transition temperatures and molar masses of terpolymers produced with the constrained geometry catalyst whereas decreased those for the metallocenes.  相似文献   

16.
Emulsifier-free emulsion copolymerization of styrene (St) and acrylamide (AAm) has been investigated in the presence of an amphoteric water-soluble initiator, 2,2′-azobis[N-(2-carboxyethyl)-2-2-methylpropionamidine]hydrate (VA057). The kinetics of polymerization and the colloidal properties of the resulting latices were studied and compared with the cases using ionic initiators. When adopting the amphoteric initiator at pHs lower than 10, stable amphoteric poly (St/AAm) latices, evidenced by the electrophoretic mobility, were prepared directly. Meanwhile, almost the same conversion versus time curves appeared and there were no apparent differences in the final particle sizes for those polymerizations, whereas in the polymerization at pH 10, a much lower rate of copolymerization and a larger size of particles were observed. The surface charge density and the growth rate of latex particles produced with VA057 at pH<10 were comparable to those of the particles with a cationic initiator, 2,2′-azobis(2-amidinopropane)dihydrochloride, but were apparently lower than those with an anionic initiator, potassium persulfate, when the polymerizations were carried out under corresponding conditions. The number of initiator fragments incorporated onto the particle surfaces was independent of polymerization pH, except for pH 10. The abnormal performance of VA057 at pH 10 was attributed to its degradation due to hydrolysis. Received: 14 December 1999 Accepted: 22 February 2000  相似文献   

17.
Atom transfer radical polymerization with activators generated by electron transfer initiating/catalytic system (AGET ATRP) of 2‐hydroxyethyl methacrylate (HEMA) was carried out in inverse miniemulsion. Water‐soluble ascorbic acid as a reducing agent and mono‐ and difunctional poly(ethylene oxide)‐based bromoisobutyrate (PEO‐Br) as a macroinitiator were used in the presence of CuBr2/tris[(2‐pyridyl)methyl]amine (TPMA) and CuCl2/TPMA complexes. The use of poly(ethylene‐co‐butylene)‐block‐poly(ethylene oxide) as a polymer surfactant resulted in the formation of stable HEMA cyclohexane inverse dispersion and PHEMA colloidal particles. All polymerizations were well‐controlled, allowing for the preparation of well‐defined PEO‐PHEMA and PHEMA‐PEO‐PHEMA block copolymers with relatively high molecular weight (DP > 200) and narrow molecular weight distribution (Mw/Mn < 1.3). These block copolymers self‐assembled to form micellar nanoparticles being 10–20 nm in diameter with uniform size distribution, and aggregation number of ~10 confirmed by atomic force microscopy and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4764–4772, 2007  相似文献   

18.
Herein, we report a cooperatively palladium/norbornene‐catalyzed polymerization, which simplifies the synthesis of functional aromatic polymers, including conjugated polymers. Specifically, an A2B2C‐type multicomponent polymerization that is based on an ortho amination/ipso alkynylation reaction was developed for the preparation of various amine‐functionalized arylacetylene‐containing polymers. Within a single catalytic cycle, the amine side chains are site‐selectively installed in situ by C?H activation during the polymerization process, which represents a major difference from conventional cross‐coupling polymerizations. This “in situ functionalization” strategy enables the modular incorporation of functional side chains starting from simple monomers, thereby conveniently affording a diverse range of functional polymers.  相似文献   

19.
《Comptes Rendus Chimie》2003,6(11-12):1411-1416
The rheological behaviour of butyl acrylate/styrene/acrylic acid latices thickened with a hydrophobically modified ethoxylated polyurethane (HEUR) or hydrophobically modified alkali-soluble polyacrylate emulsion (HASE) was investigated. While the pseudoplastic character of frequency dependence of complex viscosity was similar for both thickeners, viscoelastic behaviour, expressed as the ratio of loss and storage moduli, significantly differed, indicating that the HEUR molecules, unlike swollen HASE particles, create a viscoelastic space structure. The increase in hydrophilicity of the particle surface, achieved by incorporation of 2-hydroxyethyl methacrylate (HEMA) monomer into the latex copolymer reduced the viscoelasticity of latices thickened with HEUR, but not of those thickened with HASE. This confirms that adsorption of hydrophobic end-groups on particle surface is important for thickening of latices with HEUR and that a physical network of latex particles interconnected by the thickener macromolecules is formed. To cite this article: O. Quadrat et al., C. R. Chimie 6 (2003).  相似文献   

20.
Amphiphilic BuO‐(PEO‐stat‐PPO)‐block‐PLA‐OH diblock and MeO‐PEO‐block‐(PEO‐stat‐PPO)‐block‐PLA‐OH triblock copolymers incorporating thermoresponsive poly(ethylene oxide‐stat‐propylene oxide) (PEO‐stat‐PPO) blocks were prepared by ring‐opening polymerization of lactide (LA) initiated by macroinitiators formed from treating BuO‐(PEO‐stat‐PPO)‐OH and MeO‐PEO‐block‐(PEO‐stat‐PPO)‐OH with AlEt3. MeO‐PEO‐block‐(PEO‐stat‐PPO)‐OH was prepared by coupling MeO‐PEO‐OH and HO‐(PEO‐stat‐PPO)‐OH, followed by chromatographic purification. The cloud points of 0.2% aqueous solutions are between 36 and 46 °C for the diblock copolymers that contain a 50 wt % EO thermoresponsive block and 78 °C for the triblock copolymer that contains a 75 wt % EO thermoresponsive block. Variable temperature 1H NMR spectra recorded on D2O solutions of the diblock copolymers display no PLA resonances below the cloud point and fairly sharp PLA resonances above the cloud point, suggesting that desolvation of the thermoresponsive block increases the miscibility of the two blocks. Preliminary characterization of the micelles formed in aqueous solutions of BuO‐(PEO‐stat‐PPO)‐block‐PLA‐OH conducted using laser scanning confocal microscopy and pulsed gradient spin echo NMR point to significant changes in the size of the micellar aggregates as a function of temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5156–5167, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号