首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Optical absorption, EPR, Infrared and Raman spectral studies have been carried out on natural clinochlore mineral. The optical absorption spectrum exhibits bands characteristic of Fe2+ and Fe3+ ions. A band observed in the NIR region is attributed to an intervalence charge transfer (Fe2+-Fe3+) band. The room temperature EPR spectrum of single crystal of clinochlore mineral reveals the dominance of Fe3+ ion exhibiting resonance signals at g=2.66; 3.68 and 4.31 besides one isotropic resonance signal at g=2.0. The EPR studies have been carried out for a polycrystalline sample in the temperature range from 103 to 443 K and for a single crystal of clinochlore mineral in the temperature range 123-297 K. The number of spins (N) participating in resonance at g=4.3 signal of the single crystal of clinochlore mineral has been calculated at different temperatures. The paramagnetic susceptibility (χ) is calculated from the EPR data at different temperatures for single crystal of clinochlore mineral. The Curie constant and Curie temperature values are evaluated from 1/χ versus T graph. The infrared spectral studies reveal the formation of Fe3+-OH complexes due to the presence of higher amount of iron in this mineral. The Raman spectrum exhibits bands characteristic of Si-O-Si stretching and Si-O bending modes.  相似文献   

2.
Electron paramagnetic resonance (EPR), luminescence and infrared spectra of Mn2+ ions doped in zinc gallate (ZnGa2O4) powder phosphor have been studied. The EPR spectra have been recorded for zinc gallate phosphor doped with different concentrations of Mn2+ ions. The EPR spectra exhibit characteristic spectrum of Mn2+ ions (S=I=5/2) with a sextet hyperfine pattern, centered at geff=2.00. At higher concentrations of Mn2+ ions, the intensity of the resonance signals decreases. The number of spins participating in the resonance has been measured as a function of temperature and the activation energy (Ea) is calculated. The EPR spectra of ZnGa2O4: Mn2+ have been recorded at various temperatures. From the EPR data, the paramagnetic susceptibility (χ) at various temperatures, the Curie constant (C) and the Curie temperature (θ) have been evaluated. The emission spectrum of ZnGa2O4: Mn2+ (0.08 mol%) exhibits two bands centered at 468 and 502 nm. The band observed at 502 nm is attributed to 4T16A1 transition of Mn2+ ions. The band observed at 468 nm is attributed to the trap-state transitions. The excitation spectrum exhibits two bands centered at 228 and 280 nm. The strong band at 228 nm is attributed to host-lattice absorption and the weak band at 280 nm is attributed to the charge-transfer absorption or d5→d4s transition band. The observed bands in the FT-IR spectrum are assigned to the stretching vibrations of M-O groups at octahedral and tetrahedral sites.  相似文献   

3.
A single-crystal TlGaSe2 doped by paramagnetic Fe ions has been studied at room temperature by electron paramagnetic resonance (EPR) technique. The fine structure of EPR spectra of paramagnetic Fe3+ ions was observed. The spectra were interpreted to correspond to the transitions among spin multiplet (S=5/2, L=0) of Fe3+ ion, which are splitted by the local ligand crystal field (CF) of orthorhombic symmetry. Four equivalent Fe3+ centers have been observed in the EPR spectra and the local symmetry of crystal field at the Fe3+ site and CF parameters were determined. Experimental results indicate that the Fe ions substitute Ga at the center of GaSe4 tetrahedrons, and the rhombic distortion of the CF is caused by the Tl ions located in the trigonal cavities between the tetrahedral complexes.  相似文献   

4.
Electron paramagnetic resonance (EPR), optical absorption and emission spectra of Cr3+ ions doped in (30−x) (NaPO3)6+30PbO+40B2O3+xCr2O3 (x=0.5, 2.0, 3.0, 4.0 and 5.0 mol%) glasses have been studied. The EPR spectra exhibit resonance signals with effective g values at g≈4.55 and g≈1.97. The EPR spectra of x=3.0 mol% of Cr2O3 in sodium-lead borophosphate glass sample were studied at various temperatures (295-123 K). The intensity of the resonance signals increases with decrease in temperature. The optical absorption spectrum exhibits four bands characteristic of Cr3+ ions in octahedral symmetry. From the analysis of the bands, the crystal-field parameter Dq and the Racah interelectronic repulsion parameters B and C have been evaluated. The emission spectrum exhibit one broad band characteristic of Cr3+ ions in octahedral symmetry. This band has been assigned to the transition 4T2g (F)→4A2g (F). Correlating EPR and optical data, the molecular bonding coefficient (α) has been evaluated.  相似文献   

5.
Two different samples of natural zeolite have been investigated by X-band electron paramagnetic resonance (EPR) spectroscopy. The observed EPR spectra are typical to those observed for Fe3+ and Mn2+ ions. The lines, related to the iron, are observed, respectively at g≈4.3 and g≈2. The observed six lines, at g≈2, are the hyperfine structure due to the Mn2+ ions. The simulation of the experimental EPR spectra suggests that both of the manganese and the iron are present in more one site. The temperature dependence of the EPR spectra has been also investigated. The nature of the different sites involved in the EPR absorption is discussed.  相似文献   

6.
Electron paramagnetic resonance (EPR), optical absorption, and luminescence spectral studies of Mn2+ ions doped in (30−x) (NaPO3)6+30PbO+40B2O3+xMnO2 (x=1.0, 2.0, 3.0, 4.0, and 5.0 mol%) glasses have been studied. The EPR spectra exhibit resonance signals with effective g value at geff≈2.02 with six line hyperfine structure. A weak resonance signal with effective g value at geff≈4.3 is also observed for higher concentrations of Mn2+ ions. The EPR spectra of x =3.0 mol% of Mn2+ in sodium-lead borophosphate glass sample have been studied at various temperatures. It is observed that the resonance signal intensity decreases with increase in temperature. The optical absorption spectrum exhibits bands characteristic of Mn2+ ions in octahedral symmetry. From the analysis of the bands, the crystal-field parameter Dq and the Racah interelectronic repulsion parameters B and C have been evaluated. The emission spectrum exhibits single broad band in the green region.  相似文献   

7.
The electron paramagnetic resonance (EPR) of Nd3+ ion in KY(WO4)2 single crystal was investigated at T=4.2 K using an X-band spectrometer. The observed resonance absorption represents the complex superposition of three spectra corresponding to neodymium isotopes with different nuclear momenta. The EPR spectrum is characterized by a strong g-factor anisotropy. The temperature dependences of the g-factor were caused by strong spin-orbit and orbit-lattice coupling. The resonance lines become broader as temperature increases due to the short spin-lattice relaxation time.  相似文献   

8.
TlGaS2 single crystal doped by paramagnetic Fe3+ ions has been studied by electron paramagnetic resonance (EPR) technique. The fine structure of EPR spectra of paramagnetic Fe3+ ions was observed. The spectra reveal a nearly orthorhombic symmetry of the crystal field (CF) on the Fe3+ ions. Two groups each consisting of four equivalent Fe3+ centers were observed in the EPR spectra. The local symmetry of the crystal field on the Fe3+ centers and CF parameters were determined. Experimental results indicate that the Fe ions substitute Ga at the center of the GaS4 tetrahedrons. The rhombic distortion of the sulfur ligand CF is attributed to the effect of Tl ions located in the trigonal cavities between the tetrahedral complexes. The observed twinning of the resonance lines indicates a presence of two non-equivalent positions of Tl ions that confirms their zigzag alignment in the TlGaS2 crystal structure.  相似文献   

9.
Sol-gel glass embedded with iron nanoparticles provides fascinating features inheriting paramagnetic, ferromagnetic, and superparamagnetic resonance properties under various compositional weight ratios and annealing conditions. Two spectra arising from paramagnetic Fe3+ ions and ferrimagnetic Fe2O3 particles both centered at ge=2.0 compete with intensities as the annealing temperature TA increases. Meanwhile, the resonance line width of Fe2O3 particles sharply decreases due to the strong exchange narrowing. The asymmetric line shape and the rather broad line width can be elucidated by the ferromagnetic resonance of the single domain Fe2O3 nanoparticles.  相似文献   

10.
EPR and optical absorption studies on Fe3+ and Mn2+ doped strontium tetraborate (SrB4O7) glasses are carried out at room temperature. The EPR spectrum of the Fe3+ doped glass consists of signals with g-values 9.04, 4.22 and 2.04, whereas the EPR spectrum of Mn2+ doped glass exhibits a characteristic hyperfine sextet around g=2.0. The spectroscopic analyses of the obtained results confirmed distorted octahedral site symmetry for the Fe3+ and Mn2+ impurity ions. Crystal field and Racah parameters evaluated from optical absorption spectra are: Dq=790, B=700 and C=3000 cm−1 for Fe3+doped glass and Dq=880, B=700 and C=2975 cm−1 for Mn2+ doped glass.  相似文献   

11.
Glass-ceramics have been derived from 4.5MgO(45−x)CaO34SiO216P2O50.5CaF2xFe2O3 (x=5, 10, 15, 20 wt%) glasses by heat treatment. Room temperature electron paramagnetic resonance (EPR) spectra and temperature-dependent magnetic susceptibility (χ) of the glass-ceramics have been obtained. The EPR absorption line centered at g≈4.3 disappeared at higher concentrations of iron oxide. The intensity and line width of the EPR absorption line centered at g≈2.1 increased as the iron oxide concentration was increased. Temperature-dependent magnetization of samples with low iron oxide content revealed ferrimagnetic as well as paramagnetic contributions. Information about the structural changes involving iron ions, their valence state and the type of magnetic interactions between the Fe ions as a function of composition was obtained using EPR and χ studies.  相似文献   

12.
Electron paramagnetic resonance (EPR), optical absorption, and infrared spectral studies have been carried out on Mn2+ ions doped in poly(vinyl alcohol) (PVA) complexed with polyethylene glycol (PEG) films prepared by solution cast technique. The EPR spectra of 0.25?mol% Mn2+ ions doped polymer complex (PVA+PEG) at room temperature exhibit sextet hyperfine structure (hfs), centered at g????1.99. The spin?CHamiltonian parameter values indicate that the ground state of Mn2+ ion is d5 and the site symmetry around Mn2+ ions in tetragonally distorted octahedral site. The spin concentration participating in the resonance is measured as a function of temperature and it is observed that it obeys Boltzmann??s law. The paramagnetic susceptibility (??) is calculated from the EPR data at various temperatures (93?C333?K) and it obeys the Curie?CWeiss law. The optical absorption spectra exhibits two bands which are assigned to 6A1g (S)??4A1g (G) or 4Eg (G) and 6A1g (S)??4T2g (G) transitions. The infrared spectrum exhibits few bands due to the presence of O?CH, C?CH, and C=C groups.  相似文献   

13.
The single crystal of [Ni(ina)2(H2O)4]·(sac)2, (NINS), (ina is isonicotinamide and sac is saccharinate) complex has been prepared and its structural, spectroscopic and thermal properties have been determined. The title complex crystallizes in monoclinic system with space group P21/c, Z=2. The octahedral Ni(II) ion, which rides on a crystallographic centre of symmetry, is coordinated by two monodentate ina ligands through the ring nitrogen and four aqua ligands to form discrete [Ni(ina)2(H2O)4] unit, which captures two saccharinate ions in up and down positions, each through intermolecular hydrogen bands. The magnetic environment of copper(II) doped NINS crystal has also been identified by electron paramagnetic resonance (EPR) technique. The g and A values of Cu2+ doped NINS single crystal were calculated from the EPR spectra recorded in three mutually perpendicular planes. These values indicated that the paramagnetic centre has a rhombic symmetry with the Cu2+ ion having distorted octahedral environment. The complex exhibits only metal centred electroactivity in the potential range of −2.00, 1.25 V versus Ag/AgCl reference electrode.  相似文献   

14.
The electron paramagnetic resonance (EPR) of the valence-fluctuating semiconductor SmB6 doped by 1 at % Fe is studied. The EPR measurements are performed on a SmB6 single crystal in a temperature range of 1.6–300.0 K. A number of resonance lines whose g factors indicate the presence of iron ions in the Fe0, Fe+, Fe2+, and Fe3+ states have been detected. The iron ions are ferromagnetically ordered below a Curie temperature T = 100 K, and this ordering can be caused by the exchange interaction of impurity ions due to matrix polarization (a similar mechanism is observed in PdFe alloys). This exchange interaction is estimated to be significantly higher than that in PdFe; this fact can result from a very high density of states in the narrow f band, which is characteristic of a valence-fluctuating material.  相似文献   

15.
The X-band EPR spectra of Cr3+, Mn2+, and Fe3+ impurity ions in glasses of (CaO?Ga2O3?GeO2) system are investigated in the 77÷300 K temperature range. The experimental data analysis yields the following results: (i) Impurity chromium ions are incorporated into the (CaO?Ga2O3?GeO2) glasses network in Cr3+ (3d3,4F3/2) paramagnetic valence state only and occupy the strong distorted oxygen coordinated octahedral sites. (ii) For all activated and non-activated (CaO?Ga2O3?GeO2) glasses the iron impurity is present at concentration roughly 0.01 wt.%. Isotropic EPR signals atg eff=4.29 andg eff=2.00 are assigned to Fe3+ (3d5,6S5/2) ions in the sites with strong rhombic distortion and in the sites with nearly cubic symmetry respectively. (iii) The manganese EPR spectrum in (CaO?Ga2O3?GeO2) glasses is weakly dependent on temperature, doping procedure as well as manganese concentration. EPR spectra of impurity manganese ions in glasses with Ca3Ga2Ge3O12 and Ca3Ga2Ge4O14 compositions are virtually identical and belong to Mn2+ (3d5,6S5/2) ions. Impurity manganese ions are incorporated into the (CaO?Ga2O3?GeO2) glass network as isolated Mn2+ centres and clusters of Mn2+ ions.  相似文献   

16.
The EPR of Fe3+ ions has been used for the first time to evidence a low-spin (S=0) to high-spin (S=2) transition of Fe2+ ions in an octahedral ferrous complex [Fe(trz)(Htrz)2](BF4). The temperature dependence of the intensity of the Fe3+ EPR line atg=4.3 reveals a spin transition which occurs for the Fe2+ ions, with hysteresis. The transition temperatures areT c↑=374 K in the warming mode andT c↓=345 K in the cooling mode. The analysis of the EPR spectral data indicates the presence of a structural phase transition accompanying the spin transition.  相似文献   

17.
The spinel FeCoCrO4 has been studied between 4.2 and 538°K. Characteristic Mossbauer spectra of paramagnetic, magnetic and electronic relaxation types have been observed. The Mossbauer parameters for Fe3+ ions situated at tetrahedral (A) and octahedral (B) sites have been calculated. The cation distribution in magnetic and paramagnetic phases is found to be approximately Fe0.53+Co0.52+[Co0.52+Fe0.53+Cr3+]O4. The Neel temperature been determined by the temperature scanning method to be 310±5°K.  相似文献   

18.
An electron paramagnetic resonance (EPR) study of a synthetic single crystal of LiScGeO4 doped with Cr ions carried out earlier at the X- and Q-bands at 300, K has indicated additional weak lines. A detailed analysis of these EPR lines, which were tentatively attributed to the Fe3+ ions at two different mirror symmetry sites, is presented in this paper. The angular dependences in the three crystallographic planes were resolved by fitting the two distinct spectra denoted Fe3+(I) and Fe3+(II) with a spin Hamiltonian (S=5/2) of monoclinic symmetry. The rank-4 crystal field tensors at tetrahedral and octahedral sites were calculated with the point-charge model to determine the principal axis orientations of their cubic, tetragonal and trigonal components. A comparative analysis of the zero-field splitting tensors and the crystal field ones indicates that Fe3+(I) ions substitute for Sc3+ at octahedral sites and Fe3+(II) ions substitute for Ge4+ at tetrahedral sites with no significant distorition of the coordination polyhedra in the structure of LiScGeO4.  相似文献   

19.
Room temperature electron paramagnetic resonance (EPR) spectra and temperature dependent magnetic susceptibility data have been obtained on bulk x(ZnO,Fe2O3)(65−x)SiO220(CaO, P2O5)15Na2O (6≤x≤21 mole%) glasses prepared by melt quenching method. EPR spectra of the glasses revealed absorptions centered at g≈2.1 and 4.3. The variations of the intensity and line width of these absorption lines with composition have been interpreted in terms of the variation in the concentration of the Fe2+ and Fe3+ ions in the glass and the interaction between the iron ions. EPR and magnetic susceptibility data of the glasses reveal that both Fe2+ and Fe3+ ions are present in the glasses, with their relative concentration being dependent on the glass composition. The studies reveal superexchange type interactions in these glasses, which are strongly dependent on their iron content.  相似文献   

20.
Calcium sulfide powder containing iron as an impurity was irradiated with 580, 366 or 254 nm light at 77 K. Irradiation enhanced a broad (16 G peak-to-trough) electron paramagnetic resonance (EPR) signal at g = 2.017 and caused six sharp (~1 G) lines to appear in the X-band EPR spectrum at 347, 529, 956, 1963, 3547 and 5376 G. Enrichment of CaS with Fe2+ produced samples with similar photochemistry. It is proposed that irradiation causes the reaction Fe2+ + trap → Fe3+ + trap?, whose products give rise to six sharp EPR lines assigned to Fe3+ and a broad line associated with trap?. Both hyperfine splitting by 57Fe (13 G) and superhyperfine splitting by 33S (11.4 G) are observed in the six line spectrum. The environment of the photo-generated Fe3+ has less than octahedral symmetry. V2+ was observed at octahedral sites in unirradiated CaS for the first time, and is characterized by the EPR parameters g = 1.961 and A (hyperfine coupling) = 74.6 × 10?4 cm?1. EPR signals due to Mn2+ and Cr3+ at octahedral sites and Fe3+ at a low symmetry site were also observed in unirradiated CaS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号