首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we report the effect of microstructural characteristics on the magnetic properties of sol-gel synthesized Mn-doped ZnO. The microstructural characteristics of the samples (e.g., grain sizes and their distribution) have been varied by changing the sintering temperature (TS) and sintering duration (TH). Weak room temperature ferromagnetism (RTFM) has been observed in the samples sintered for ∼8 h at 500, 600, 700, 800 and 900 °C. The ferromagnetic fraction and the saturation magnetization, however, first increase as TS increases from 500 to 600 °C and after that both start decreasing. On the other hand, the samples sintered for ∼12 h at the same temperatures show paramagnetic behavior at room temperature. Field emission scanning electron microscope (FESEM) results show enhancement in the grain sizes with the increase in both TS and TH. Energy dispersive X-ray (EDAX) results show increase in the oxygen content in the sample with increase in both TS and TH. X-ray diffractometer (XRD) measurements reveal that the basic crystal structure of all the samples corresponds to the wurtzite structure of pure ZnO together with some minor impurities. The correlation between the observed magnetic properties and the microstructural characteristics of the samples has been discussed in this paper.  相似文献   

2.
Size-controlled Mn0.67Zn0.33Fe2O4 nanoparticles in the wide range from 80 to 20 nm have been synthesized, for the first time, using the oxidation method. It has been demonstrated that the particle size can be tailor-made by varying the concentration of the oxidant. The magnetization of the 80 nm particles was 49 A m2 kg−1 compared to 34 A m2 kg−1 for the 20 nm particles. The Curie temperatures for all the samples are found to be within 630±5 K suggesting that there is no size-dependent cation distribution. The critical particle size for the superparamagnetic limit is found to be about 25 nm. The effective magnetic anisotropy constant is experimentally determined to be 7.78 kJ m−3 for the 25 nm particles, which is about an order of magnitude higher than that of the bulk ferrite.  相似文献   

3.
Double perovskite Sr2FeMoO6 powders with small crystallite size have been synthesised with citrate-gel method. The starting solution pH was varied between 1.5 and 9.0 resulting in large differences in the phase composition and ordering of B/B sites. The samples prepared at 975 °C had crystallite sizes under 40 nm whereas crystallite sizes of the samples prepared at 1050 °C were between 78 and 239 nm. The XRD patterns were refined with spacegroup I 4/m, which gave good results for both batches, although clearly better results were obtained with monoclinic P 21/n spacegroup for the 975 °C batch. The ordering and the saturation magnetization agreed well with each other after treatment at 1050 °C, but the samples prepared at 975 °C had a strongly reduced saturation magnetization from that given by the ordering.  相似文献   

4.
In the present work, mixed magnesium-manganese ferrites of composition Mg0.9Mn0.1Al0.3CozFe1.7−zO4 where z=0.3, 0.5 and 0.7 have been synthesized by the citrate precursor technique. X-ray diffraction patterns of the samples confirmed the formation of single-phase spinel structure. The ferrites have been investigated for their electric and magnetic properties such as dc resistivity, Curie temperature, saturation magnetization, initial permeability and relative loss factor (RLF). Fairly constant value of initial permeability over a wide frequency range (0.1-20 MHz) and low values of the relative loss factor of the order of 10−4-10−5, in the frequency range 0.1-30 MHz, are the cardinal achievements of the present investigation. In addition to this, initial permeability was found to increase with an increase in temperature while RLF was observed to be low at these temperatures. The dc resistivity and Curie temperature were found to increase with an increase in cobalt content. The mechanisms contributing to these results are discussed in detail in this paper.  相似文献   

5.
This study reports the structural and magnetic properties of spinel systems Li4Mn5−xTixO12 (“4-5-12” series) and LiNi0.5Mn1.5−xTixO4 (“LNMTO” series), both based on Mn4+ substitution by Ti4+. Intermediate compositions covering the whole range of compositions (0≤x≤5 and 0≤x≤1.5, respectively) were prepared by solid state reaction. The 4-5-12 system forms a continuous spinel solid solution, whereas the spinel phase range in LNMTO stops before the end member “LiNi0.5Ti1.5O4”, which is multi-phased with a major hexagonal phase component. Cell parameters and (Mn,Ti)-O distances increase monotonically with titanium content in both series. In the LNMTO series, the end member LiNi0.5Mn1.5O4 is known to form a superstructure with Ni/Mn cation ordering. Neutron diffraction and Raman spectroscopy show that this order is lost when Ti is substituted, even at low level (x=0.15). The LNMTO crystal chemistry is also complicated by the presence of partial cation inversion, and the presence of a secondary rocksalt-type phase that modifies the spinel stoichiometry. Magnetic properties are characterized by a competition between ferromagnetic and antiferromagnetic interactions; no magnetic ordering is achieved, in agreement with B-site cation frustration and disorder. Electrochemical measurements show that the Ti3+/4+ and Mn3+/4+ redox couples behave independently in the 4-5-12 series, and that titanium decreases the high-potential electrochemical redox activity of LNMTO because of its blocking character for electron transfer to and from the nickel sites in the spinel structure.  相似文献   

6.
Highly transparent nanocrystalline zirconia thin films were prepared by the sol-gel dip coating technique. XRD pattern of ZrO2 thin film annealed at 400 °C shows the formation of tetragonal phase with a particle size of 13.6 nm. FT-IR spectra reveal the formation of Zr-O-Zr and the reduction of OH and other functional groups as the temperature increases. The transmittance spectra give an average transmittance greater than 80% in the film of thickness 262 nm. Photoluminescence (PL) spectra give intense band at 391 nm and a broad band centered at 300 nm. The increase of PL intensity with elevation of annealing temperature is related to reduction of OH groups, increase in the crystallinity and reduction in the non-radiative related defects. The luminescence dependence on defects in the film makes it suitable for luminescent oxygen-sensor development. The “Red shift” of excitation peak is related to an increase in the oxygen content of films with annealing temperature. The “Blue shift” of PL spectra originates from the change of stress of the film due to lattice distortion. The defect states in the nanocrystalline zirconia thin films play an important role in the energy transfer process.  相似文献   

7.
This report presents the synthesis of copper cadmium ferrite (Cu1−xCdxFe2O4, x=0.3, 0.4, 0.5, 0.6 and 0.7) by the citrate precursor method and its subsequent characterization by X-ray diffraction (XRD), differential scanning calorimetry, infrared spectroscopy and ferromagnetic resonance. XRD results confirm the single cubic spinel phase formation with the particle size of 40 nm, which decreased up to 20 nm with increase in Cd content, while the lattice parameter increased with increase in Cd content. A significant change in the magnetic properties was observed in the CuFe2O4 system with Cd doping. The line width and resonance field variation against change in temperature is noted and the data is fitted to the linearlized model (LM) and Smit and Beljers (SB) model to find out the parameters. The results recorded from the SB approach are in good agreement with those observed in the magnetic measurements carried out by vibrating sample magnetometer (VSM) techniques.  相似文献   

8.
Colossal magnetoresistance (CMR) manganites with compositional formula, La0.67Ca0.33−xSrxMnO3 (where x=0, 0.09, 0.11, 0.13, 0.33) were prepared by citrate gel route mainly to understand the elastic behaviour in the vicinity of their magnetic transition temperature TC. The structural characterizations of all the materials clearly indicate that samples upto x=0.13 doping, are having orthorhombic structure with Pbnm space group and sample with x=0.33 is having rhombohedral structure with space group. The magnetic transition temperatures (TC) are determined by AC susceptibility measurements and are found to increase continuously with increasing strontium concentration. Finally, a systematic investigation of the ultrasonic longitudinal velocities of all the samples was carried out. Further, all the samples are found to exhibit anomalous behaviour in the vicinity of their magnetic transition temperatures and the observed behaviour is explained using Landau's theory.  相似文献   

9.
In this paper, the effect of annealing temperature on optical constants was studied. The ZnO films were deposited on microscopic glass substrates using the sol-gel method for various annealing temperatures. The deposited zinc oxide (ZnO) films were characterized by an X-ray diffractometer (XRD), a spectrophotometer and scanning electron microscopy (SEM). The transmittance spectra recorded through the spectrophotometer exhibits 90% transmittance. The XRD spectra showed polycrystalline nature of ZnO film. Optical constants were determined through transmittance spectra using an envelope method. It was found that there was a significant effect of annealing temperature on the refractive index and extinction coefficient of deposited ZnO films. In this experiment, the optimum refractive index value of 1.97 was obtained at 350 °C annealing temperature at visible (vis) wavelength. The optical energy gap was found to be of ∼3.2 eV for all the samples. The top view of SEM showed the ZnO grain growth on the glass substrates.  相似文献   

10.
Fine powders of NiCuZn ferrite with composition Ni(0.7−x)CuxZn0.3Fe2O4 (where x=0, 0.2, 0.4 and 0.6) were prepared by the citrate precursor method. X-ray diffraction measurements confirm the formation of single-phase cubic spinel structure. The grain size was estimated by SEM micrograph which increases with Cu content. Dielectric constant (?) and loss tangent (tan δ) were measured as a function of frequency. The ? and tan δ show a decreasing trend with increase of frequency for all the samples. The DC resistivity was measured as a function of temperature. The temperature-dependent DC resistivity measurements show that the room-temperature DC resistivity of NiCuZn ferrite with x=0.2 is of the order of 109 Ω cm. The AC conductivity (σAC) was studied as a function of frequency. The hysteresis data indicate that the maximum saturation magnetization of 38.66 emu/g is obtained for the composition with x=0.2.  相似文献   

11.
Immiscibility in the trevorite (NiFe2O4)-franklinite (ZnFe2O4) spinel binary is investigated by reacting 1:1:2 molar ratio mixtures of NiO, ZnO and Fe2O3 in a molten salt solvent at temperatures in the range 400-1000 °C. Single phase stability is demonstrated down to about 730 °C (the estimated consolute solution temperature, Tcs). A miscibility gap/solvus exists below Tcs. The solvus becomes increasingly asymmetric at lower temperatures and extrapolates to stoichiometric parameters = 0.15, 0.8 at 300 °C. A thermodynamic analysis, which accounts for changes in configurational and magnetic ordering entropies during cation mixing, predicts solvus phase compositions at room temperature in reasonable agreement with those determined by extrapolation of experimental results. The delay between disappearance of magnetic ordering above (for NiFe2O4) and disappearance of a miscibility gap at Tcs is explained by the persistence of long-range ordering correlations in a quasi-paramagnetic region above TC.  相似文献   

12.
Nanocrystalline ZnTiO3 thin films have been grown on Si (1 0 0) at room temperature by using simple, cost effective sol-gel process assisted by microwave irradiation for thermal treatment. For comparison purpose the deposited films have subjected to two kinds of annealing treatments: first set by using conventional annealing and second set by irradiating the deposited films at different microwave powers for 10 min. In both treated films, formation of cubic phase ZnTiO3 structure has been observed. It is evident that there is a dramatic structural modification when the deposited films are exposed to microwave. It is evident that there is a dramatic change in the morphological properties of the films irradiated in microwave compared to the conventional annealing temperature. Microwave exposed films have shown 19% of Zn, 19% of Ti and 62% of O in the films close to the stiochiometry of the ZnTiO3, where as annealed films have shown 18% of Zn, 17.5% of Ti, and 64.5% of O in the films of ZnTiO3. Plausible mechanism for the formation of cubic phase of ZnTiO3 at low microwave powers has also been discussed. This new innovative microwave heating could open a door for the advanced technologies to cut down the process cost in post treatment of the materials.  相似文献   

13.
FeNi alloy nanoparticles with controllable sizes were attached on the multiwalled carbon nanotubes by adjusting the atomic ratio of metal to carbon in the mixed solution of nitrate with Fe:Ni=1:1 (atomic ratio) via wet chemistry. Transmission electron microscopy (TEM) and high-resolution TEM indicated that quasi-spherical FeNi alloy nanoparticles with sizes in the range 12-25 nm are obtained. FeNi alloy composed of major face center cubic (fcc) and minor body center cubic (bcc) structures, which is proved by the X-ray powder diffraction (XRD). Magnetization measured by vibrating sample magnetometer demonstrated that both the coercive force and saturation magnetizations decrease as the size of the FeNi alloy nanoparticles decreased. The chemical method is promising for fabricating FeNi alloy nanoparticles attached on carbon nanotubes for magnetic storage and ultra high-density magnetic recording applications.  相似文献   

14.
Room temperature multiferroic properties of BiFeO3 (BFO), Bi0.9La0.1FeO3 ((La)BFO) and Bi0.9La0.075Ce0.025FeO3 ((La,Ce)BFO) nanoparticles have been reported in this paper. XRD (X-ray diffraction) analyses of the nanoparticles show a decrease in the lattice constants and cell volume with the substitution of La and Ce. It is evident from the SEM (scanning electron microscope) micrographs that the (La,Ce) co-doped sample possesses dense microstructure made of smaller particles. Raman study accounts for the weakening of the strong hybridization between Bi-O by the substitution of La and Ce ions. This is also accompanied by an increase in the remanent magnetization, dielectric constant, and ferroelectric polarization. BFO nanoparticles show exchange bias effect under an applied magnetic field while the (La)BFO and (La,Ce)BFO samples show no trace of such effect. Ac-conductivity of (La,Ce) co-doped sample is observed to be several orders lesser in magnitude than bulk BFO ceramics. These results are interpreted by means of the subtle change in the structure, suppression of the spin cycloid and reduction of oxygen vacancies in the doped samples.  相似文献   

15.
Polycrystalline NiCuZn soft ferrites with stoichiometric iron were prepared by a novel microwave sintering method. The powders were calcined, compacted and sintered at 950 °C for 30 min in a microwave sintering furnace. X-ray diffraction patterns confirm the formation of single phase cubic spinel structure. The grain size was estimated using SEM micrographs. The lattice constant is found to increase with increase in zinc concentration. The sintered ferrites have been investigated for their physical, magnetic and electrical properties such as bulk density, X-ray density, porosity, anisotropy constant, initial permeability, saturation magnetization, DC resistivity, dielectric constant and dielectric loss as a function of zinc concentration. Permeability, saturation magnetization, dielectric constant and dielectric loss were found to increase while DC resistivity was found to decrease with the replacement of Zn with Ni. The present series of ferrites are found to posses properties that are suitable for the core materials in multilayer chip inductors.  相似文献   

16.
In this work, we report the magnetic properties of isotropic M-type SrFe12−xAlxO19 (x=0.0,1.5) hexaferrites synthesized by means of Pechini method. A polycrystalline distribution of fine grains was verified by Transmission Electron Microscopy for both compositions, with average sizes below 60 nm. Remarkable coercivity values within the range 500–850 kA/m were attained as a consequence of a combined effect of grain size refinement together with an enhancement of the anisotropy field afforded by the incorporation of the Al3+ cations into the hexagonal crystal structure.  相似文献   

17.
In the present study we have synthesized CdS semiconducting quantum dots by the chemical precipitation method using Thioglycerol as the capping agent. X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) are employed to characterize the size, morphology and crystalline structure of the as-prepared material. The synthesized QPs have a mixture of cubical and hexagonal crystal symmetry with 12 nm average diameter. Ultraviolet-visible (UV-vis) absorption spectroscopy is used to calculate the band gap of the material and blue shift in absorption edge. Confinement of the optical phonon modes in the QPs is studied by Raman spectroscopy, while FTIR for identification of chemical bonds in the nanomaterial. Multiple cadmium and sulphur defects were observed by employing the photoluminescence (PL) method.  相似文献   

18.
In this study, nanocrystalline MgO powders were prepared using the sol-gel method and annealed in air over a temperature range of [400–700] °C. Various microstructural characteristics were determined using three different X-ray diffraction analysis approaches, i.e., modified Williamson-Hall, modified Warren-Averbach, and variance methods. The transmission electron microscopy micrographs were used to measure the size distributions of the MgO samples. The results obtained using the three different methods were in good agreement. At all temperatures, the main source of dislocation was edge type but as the annealing temperature increased, the crystallite size and dislocation density increased and decreased, respectively, thereby indicating that the crystal quality of the nanopowders was improved.  相似文献   

19.
Ca1−xBixNb1−xCrxO3 (x=0.01-0.5) ceramic powders were synthesized using the sol-gel process. The single-phase solids can be presented at x=0.01 and 0.03. The coexistence of orthorhombic perovskite and the secondary phase of BiCrO3 was verified, as presented for x=0.05-0.5. Grains with a micro-cube topography were obtained for x=0.3-0.5. The average grain size is about 0.4 and 1.1 μm for x=0.3 and 0.5, respectively. The highest dielectric constant peak was measured at around 55 °C for x=0.5 and at 75 °C for x=0.3. The high dielectric constant was caused by the formation of barrier layers at the interface of the bi-phase mixed ceramics. Space charge polarization contributed to the observed behavior.  相似文献   

20.
The electrochemical activity of an electrode of carbon nanotubes (CNTs) attached with TiO2 nanoparticles was investigated. A chemical-wet impregnation was used to deposit different TiO2 particle densities onto the CNT surface, which was chemically oxidized by nitric acid. Transmission electron microscopy showed that each TiO2 nanoparticle has an average size of 30-50 nm. Nitrogen physisorption measurement indicated that the porosity of CNTs is partially hindered by some titania aggregations at high surface coverage. Cyclic voltammetry measurements in 1 M H2SO4 showed that (i) an obvious redox peak can be found after the introduction of TiO2 and (ii) the specific peak current is proportional to the TiO2 loading. This enhancement of electrochemical activity was attributed to the fact that TiO2 particles act as a redox site for the improvement of energy storage. According to our calculation, the electrochemical capacitance of TiO2 nanocatalysts in acid electrolyte was estimated to be 180 F/g. Charge-discharge cycling demonstrated that the TiO2-CNT composite electrode maintains stable cycleability of over 200 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号