首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Does a high UV environment ensure adequate vitamin D status?   总被引:1,自引:0,他引:1  
This study assesses the Vitamin D status of 126 healthy free-living adults aged 18-87 years, in southeast Queensland, Australia (27 degrees S) at the end of the 2006 winter. Participants provided blood samples for analysis of 25(OH)D (the measure of an individual's Vitamin D status), PTH, Calcium, Phosphate, and Albumin, completed a questionnaire on sun-protective/sun-exposure behaviours, and were assessed for phenotypic characteristics such as skin/hair/eye colour and BMI. We found that 10.2% of the participants had serum 25(OH)D levels below 25 nmol/l (considered deficient) and a further 32.3% had levels between 25 nmol/l and 50 nmol/l (considered insufficient). Our results show that low levels of 25(OH)D can occur in a substantial proportion of the population at the end of winter, even in a sunny climate. 25(OH)D levels were higher amongst those who spent more time in the sun and lower among obese participants (BMI>30) than those who were not obese (BMI<30). 25(OH)D levels were also lower in participants who had black hair, dark/olive skin, or brown eyes, when compared with participants who had brown or fair hair, fair skin, or blue/green eyes. No associations were found between 25(OH)D status and age, gender, smoking status, or the use of sunscreen.  相似文献   

2.
Vitamin D is necessary to maintain healthy bones, and may prevent other chronic diseases. There is limited information regarding the vitamin D status of people living in climates with relatively high ambient ultraviolet radiation. We therefore aimed to determine serum 25(OH)D levels in a group of office-workers in subtropical Australia. We collected blood from 129 office workers in summer (n = 129) and 175 in winter (91 in both seasons). Serum 25(OH)D was estimated using a commercial chemiluminescent immunoassay and we asked participants to complete questionnaires about sun exposure and diet for the month prior to blood collection. Summer and winter mean serum 25(OH)D was 74 (95% CI 70-77) nmol L(-1) and 54 (95% CI 51-57) nmol L(-1), respectively. In summer, 14% of participants were classed as "insufficient," compared with 51% in winter. High 25(OH)D levels in summer were associated with time spent outdoors in nonpeak UV periods, while in winter high levels were associated with intake of vitamin D from food or supplements. The high prevalence of vitamin D insufficiency observed in this population highlights the need for further examination of the relation between sunlight and vitamin D production to enable more accurate sun exposure recommendations.  相似文献   

3.
Solar ultraviolet‐B radiation (UVB) is essential for epidermal vitamin D production. We aimed to quantitate the relationship between personal solar UV exposure and serum 25hydroxy vitamin D (25[OH]D) concentration. Blood was collected for 25(OH)D analysis in 207 South Australian adults aged 27–61 years. At the time of blood collection, each participant completed a questionnaire, which included a calendar for recall of sun exposure in the preceding 16 weeks. We examined the association between solar UV exposure and serum 25(OH)D graphically from smoothed scatter plots, and modeled it using multiple linear regression, with age, sex and body mass index as covariates. Estimated erythemal solar UV exposure in the 6 weeks before blood collection best predicted serum 25(OH)D concentrations. Serum 25(OH)D rose with increasing personal solar UV exposure to a maximum of about 89 nmol L?1 at an estimated mean weekly solar erythemal UV exposure of about 1230 mJ cm?2. The maximum was the same after accounting for clothing coverage and was reached at an estimated whole body equivalent exposure to ambient UV of ca 700 mJ cm?2. These results suggest that an average maximum serum 25(OH)D of ca 89 nmol L?1 is achieved from sun exposure in a healthy Australian adult population.  相似文献   

4.
Widespread use of pesticides has caused serious environmental concern. In order to evaluate the fate of organic pesticides in the atmosphere, rate constants for gas phase reactions of OH radicals with dichlorvos, carbaryl, chlordimeform, and 2,4‐D butyl ester were measured using the relative rate method at ambient temperature and 101 kPa total pressure. On‐line FTIR spectroscopy was used to monitor the concentrations of pesticides as a function of time. The reaction rate constants with OH radicals (in units of cm3 molecule−1 s−1) have been determined as (2.0 ± 0.4) × 10−11 for dichlorvos, (3.3 ± 0.5) × 10−11 for carbaryl, (3.0 ± 0.7) × 10−10 for chlordimeform, and (1.5 ± 0.2) × 10−11 for 2,4‐D butyl ester. These rate constants agree well with those estimated based on the structure–activity relationship. The group rate constant for NC group (k(NC)) was estimated as 2.7 × 10−10 cm3 molecule−1 s−1. Dimethyl phosphite has been tentatively identified as a product of the reaction of dichlorvos with OH radicals. Atmospheric lifetimes due to the reactions with OH radicals were also estimated (in units of h): 14 ± 3 for dichlorvos, 8 ± 1 for carbaryl, 1.0 ± 0.3 for chlordimeform, and 19 ± 3 for 2,4‐D butyl ester. These short atmospheric lifetimes indicate that the four organic pesticides degrade rapidly in the atmosphere, and they themselves are unlikely to cause persistent pollution. Further studies are needed to identify the potential hazard of their degradation products. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 755–762, 2005  相似文献   

5.
Vitamin D status is influenced by sun exposure, geographic latitude, daily outdoor activities, body surface exposed to sunlight and dietary intakes. Malaysia, is sunny all year round. However, the vitamin D status of this population especially among the healthy and free living adults is not known. Therefore a study of vitamin D status and associated factors was initiated among an existing Malay cohort in Kuala Lumpur. A total of 380 subjects were sampled to have their vitamin D status assessed using 25-hydroxyvitamin D (25(OH)D). A short questionnaire enquiring socio-demographic characteristics, exposure to sunlight and clothing style was administered. Their mean age was 48.5±5.2years and the mean 25(OH)D for males and females were 56.2±18.9nmol/L and 36.2±13.4nmol/L respectively. There were significant positive correlation for sun exposure score (r=0.27, p<0.001) and negative correlation for sun protection score (r=-0.41, p<0.001) with 25(OH)D levels. In the logistic regression model, females (OR=2.93; 95% CI: 1.17, 7.31), BMI (1.1; 1.03, 1.20) and sun exposure score (0.998; 0.996, 0.999) were significantly associated with vitamin D status as represented by 25(OH)D levels. Our findings show that obesity, lifestyle behaviours and clothing style are directly associated with our participants especially females' low vitamin D status.  相似文献   

6.
Rate constants and activation energies for the reactions of ozone with isoprene, methacrolein, and methyl‐vinyl‐ketone in aqueous solution have been determined at temperatures from 5 to 30°C, using the stopped‐flow‐technique and monitoring ozone decay. The rate constants at 25°C and the activation energies have been found to be 4.1 (±0.2) × 105 M−1 s−1 and 19.9 (±0.5) kJ mol−1 for isoprene, 2.4 (±0.1) × 104 M−1 s−1 and 23.9 (±0.5) kJ mol−1 for methacrolein, and 4.4 (±0.2) × 104 M−1 s−1 and 18.0 (±0.5) kJ mol−1 for methyl‐vinyl‐ketone. A UV spectrum of a transient intermediate with a lifetime of about 15 s formed during the ozonation of isoprene was obtained in the range 220 to 300 nm. It rises steadily toward 220 nm. It is suggested that the spectrum can be attributed to the two unsaturated Criegee‐intermediates (carbonyl oxides), which would conceivably be stabilized by resonance. Lifetime considerations indicate that the oxidation of isoprene and its first‐generation reaction products, methacrolein and methyl‐vinyl‐ketone, by ozone and OH in the aqueous phase of a cloud environment play only a minor role compared to homogeneous gas‐phase processing. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 182–190, 2001  相似文献   

7.
The objective of this study was to evaluate the effect of reduced sun exposure of outdoor workers on vitamin D status using different modalities of sun protection, for primary prevention of skin cancer. 25‐OH‐D3 measurements were performed in two successive winters, 8 (interim) and 20 months after initiation of the study, in three groups of male outdoor workers, enrolled in either a complete, partial or minimal sun protection program. Ambient solar UVB radiation was monitored simultaneously. No intragroup or intergroup differences were observed between the interim‐ and postintervention measurements of mean 25‐OH‐D3, which were close to 30 ng mL?1. Significant risk factors for postintervention 25‐OH‐D3 levels >33.8 ng mL?1 (a surrogate for reduced sun protection) were: previous sunburn episodes (OR 2.5; 95% CI 1.01–6.3; P = 0.05) and younger age (OR 0.92; 95 CI 0.86–0.98; P = 0.009). Outdoor workers of Western, compared with those of Eastern paternal origin had a borderline significant risk (OR 2.4; 95% CI 0.9–6.3; P = 0.07). A borderline significant effect (OR 2.9; 95% CI 0.97–10.1; P = 0.085) was also noted for those in the minimal intervention group. In conclusion, sun protection among outdoor workers following a successful intervention did not suppress mean winter 25‐OH‐D3.  相似文献   

8.
Rate constants for the gas‐phase reaction of hexamethylbenzene (HMB) with OH radicals and H atoms and of 1,3,5‐trimethylbenzene (TMB) with H atoms have been obtained in a flow system at 295 ± 2 K and a pressure of 25 mbar He using MS measurements. Obtained rate constants from a relative rate technique are k(OH+HMB) = (1.13 ± 0.11) 10−10, k(H+HMB) = (5.9 ± 3.4) 10−13 and k(H+TMB) = (4.6 ± 2.7) 10−13 cm3 molecule−1 s−1, respectively. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 124–129, 2001  相似文献   

9.
The kinetics of the reactions OH + Br2 → HOBr + Br (1) and OD + Br2 → DOBr + Br (3) have been studied in the temperature range 230–360 K and at total pressure of 1 Torr of helium using the discharge‐flow mass spectrometric method. The following Arrhenius expressions were obtained either from the kinetics of product formation (HOBr, DOBr) in excess of Br2 over OH and OD or from the kinetics of Br2 consumption in excess of OH and OD: k1 = (1.8 ± 0.3) × 10−11 exp [(235 ± 50)/T] and k3 = (1.9 ± 0.2) × 10−11 exp [(220 ± 25)/T] cm3 molecule−1 s−1. For the reaction channels of the title reactions: OH + Br2 → BrO + HBr and OD + Br2 → BrO + DBr, the upper limits of the branching ratios were found to be 0.03 and 0.02 at T = 320 K, respectively. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 698–704, 1999  相似文献   

10.
Vitamin D deficiency is more common in Northeast‐Asian immigrants to western countries than in the local population; prevalence equalizes as immigrants adopt the host country's culture. In a community‐based study of 100 Northeast‐Asian immigrants in Canberra, Australia, we examined predictors of vitamin D status, its association with indicators of acculturation (English language use; time since migration) and mediators of that association. Participants completed a sun and physical activity diary and wore an electronic ultraviolet radiation (UVR) dosimeter for 7 days. Skin colour was measured by reflectance spectrophotometry. Serum concentrations of 25‐hydroxyvitamin D (25(OH)D) and cardio‐metabolic biomarkers were measured on fasting blood. In a multiple linear regression model, predictors for 25(OH)D concentration were season of blood collection, vitamin D supplementation, UVR exposure, body mass index, physical activity and having private health insurance (R2 = 0.57). Greater acculturation was associated with lower risk of vitamin D deficiency (de‐seasonalized 25(OH)D level <50 nmol L?1) (Adjusted Odds Ratio (AOR): 0.22 [95%CI 0.04–0.96]); this association was statistically mediated by physical activity and time outdoors. Vitamin D deficiency was associated with higher total cholesterol levels (>5.0 mmol L?1) (AOR: 7.48 [95%CI 1.51–37.0]). Targeted public health approaches are required to manage the high prevalence of vitamin D deficiency in migrants retaining a traditional lifestyle.  相似文献   

11.
The rate constants for the reactions of the OH radicals with a series of aldehydes have been measured in the temperature range 243–372 K, using the pulsed laser photolysis‐pulsed laser induced fluorescence method. The obtained data for propanaldehyde, iso‐butyraldehyde, tert‐butyraldehyde, and n‐pentaldehyde were as follows (in cm3 molecule−1 s−1): (a) in the Arrhenius form: (5.3 ± 0.5) × 10−12 exp[(405 ± 30)/T], (7.3 ± 1.9) × 10−12 exp[(390 ± 78)/T], (4.7 ± 0.8) × 10−12 exp[(564 ± 52)/T], and (9.9 ± 1.9) × 10−12 exp[(306 ± 56)/T]; (b) at 298 K: (2.0 ± 0.3) × 10−11, (2.6 ± 0.4) × 10−11, (2.7 ± 0.4) × 10−11, and (2.8 ± 0.2) × 10−11, respectively. In addition, using the relative rate method and alkanes as the reference compounds, the room‐temperature rate constants have been measured for the reactions of chlorine atoms with propanaldehyde, iso‐butyraldehyde, tert‐butyraldehyde, n‐pentaldehyde, acrolein, and crotonaldehyde. The obtained values were (in cm3 molecule−1 s−1): (1.4 ± 0.3) × 10−10, (1.7 ± 0.3)10−10, (1.6 ± 0.3) × 10−10, (2.6 ± 0.3) × 10−10, (2.2 ± 0.3) × 10−10, and (2.6 ± 0.3) × 10−10, respectively. The results are presented and discussed in terms of structure‐reactivity relationships and atmospheric importance. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 676–685, 2000  相似文献   

12.
Using relative rate methods, rate constants for the gas‐phase reactions of OH radicals and Cl atoms with di‐n‐propyl ether, di‐n‐propyl ether‐d14, di‐n‐butyl ether and di‐n‐butyl ether‐d18 have been measured at 296 ± 2 K and atmospheric pressure of air. The rate constants obtained (in cm3 molecule−1 s−1 units) were: OH radical reactions, di‐n‐propyl ether, (2.18 ± 0.17) × 10−11; di‐n‐propyl ether‐d14, (1.13 ± 0.06) × 10−11; di‐n‐butyl ether, (3.30 ± 0.25) × 10−11; and di‐n‐butyl ether‐d18, (1.49 ± 0.12) × 10−11; Cl atom reactions, di‐n‐propyl ether, (3.83 ± 0.05) × 10−10; di‐n‐propyl ether‐d14, (2.84 ± 0.31) × 10−10; di‐n‐butyl ether, (5.15 ± 0.05) × 10−10; and di‐n‐butyl ether‐d18, (4.03 ± 0.06) × 10−10. The rate constants for the di‐n‐propyl ether and di‐n‐butyl ether reactions are in agreement with literature data, and the deuterium isotope effects are consistent with H‐atom abstraction being the rate‐determining steps for both the OH radical and Cl atom reactions. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 425–431, 1999  相似文献   

13.
The rate coefficients of the reactions of OH radicals and Cl atoms with three alkylcyclohexanes compounds, methylcyclohexane (MCH), trans‐1,4‐dimethylcyclohexane (DCH), and ethylcyclohexane (ECH) have been investigated at (293 ± 1) K and 1000 mbar of air using relative rate methods. A majority of the experiments were performed in the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC), a stainless steel chamber using in situ FTIR analysis and online gas chromatography with flame ionization detection (GC‐FID) detection to monitor the decay of the alkylcyclohexanes and the reference compounds. The studies were undertaken to provide kinetic data for calibrations of radical detection techniques in HIRAC. The following rate coefficients (in cm3 molecule−1 s−1) were obtained for Cl reactions: k(Cl+MCH) = (3.51 ± 0.37) × 10–10, k(Cl+DCH) = (3.63 ± 0.38) × 10−10, k(Cl+ECH) = (3.88 ± 0.41) × 10−10, and for the reactions with OH radicals: k(OH+MCH) = (9.5 ± 1.3) × 10–12, k(OH+DCH) = (12.1 ± 2.2) × 10−12, k(OH+ECH) = (11.8 ± 2.0) × 10−12. Errors are a combination of statistical errors in the relative rate ratio (2σ) and the error in the reference rate coefficient. Checks for possible systematic errors were made by the use of two reference compounds, two different measurement techniques, and also three different sources of OH were employed in this study: photolysis of CH3ONO with black lamps, photolysis of H2O2 at 254 nm, and nonphotolytic trans‐2‐butene ozonolysis. For DCH, some direct laser flash photolysis studies were also undertaken, producing results in good agreement with the relative rate measurements. Additionally, temperature‐dependent rate coefficient investigations were performed for the reaction of methylcyclohexane with the OH radical over the range 273‐343 K using the relative rate method; the resulting recommended Arrhenius expression is k(OH + MCH) = (1.85 ± 0.27) × 10–11 exp((–1.62 ± 0.16) kJ mol−1/RT) cm3 molecule−1 s−1. The kinetic data are discussed in terms of OH and Cl reactivity trends, and comparisons are made with the existing literature values and with rate coefficients from structure‐activity relationship methods. This is the first study on the rate coefficient determination of the reaction of ECH with OH radicals and chlorine atoms, respectively.  相似文献   

14.
Rate coefficients have been determined for the gas‐phase reaction of the hydroxyl (OH) radical with the aromatic dihydroxy compounds 1,2‐dihydroxybenzene, 1,2‐dihydroxy‐3‐methylbenzene and 1,2‐dihydroxy‐4‐methylbenzene as well as the two benzoquinone derivatives 1,4‐benzoquinone and methyl‐1,4‐benzoquinone. The measurements were performed in a large‐volume photoreactor at (300 ± 5) K in 760 Torr of synthetic air using the relative kinetic technique. The rate coefficients obtained using isoprene, 1,3‐butadiene, and E‐2‐butene as reference hydrocarbons are kOH(1,2‐dihydroxybenzene) = (1.04 ± 0.21) × 10−10 cm3 s−1, kOH(1,2‐dihydroxy‐3‐methylbenzene) = (2.05 ± 0.43) × 10−10 cm3 s−1, kOH(1,2‐dihydroxy‐4‐methylbenzene) = (1.56 ± 0.33) × 10−10 cm3 s−1, kOH(1,4‐benzoquinone) = (4.6 ± 0.9) × 10−12 cm3 s−1, kOH(methyl‐1,4‐benzoquinone) = (2.35 ± 0.47) × 10−11 cm3 s−1. This study represents the first determination of OH radical reaction‐rate coefficients for these compounds. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 696–702, 2000  相似文献   

15.
The rate constant for the reaction of OH radicals with pinonaldehyde has been measured at 293 ± 6 K using the relative rate method in the laboratory in Wuppertal (Germany) using photolytic sources for the production of OH radicals and in the EUPHORE smog chamber facility in Valencia (Spain) using the in situ ozonolysis of 2,3‐dimethyl‐2‐butene as a dark source of OH radicals. In all the experiments pinonaldehyde and the reference compounds were monitored by FTIR spectroscopy, and in addition in the EUPHORE smog chamber the decay of pinonaldehyde was monitored by the HPLC/DNPH method and the reference compound by GC/FID. The results from all the different series of experiments were in good agreement and lead to an average value of k(pinonaldehyde + OH) = (4.0 ± 1.0) × 10−11 cm3 molecule−1 s−1. This result lead to steady‐state estimates of atmospheric pinonaldehyde concentrations in the ppbV range (1 ppbV ≈ 2.5 × 1010 molecule cm−3 at 298 K and 1 atm) in regions with substantial α‐pinene emission. It also implies that atmospheric sinks of pinonaldehyde by reaction with OH radicals could be half as important as its photolysis. The rate constant of the reaction of pinonaldehyde with Cl atoms has been measured for the first time. Relative rate measurements lead to a value of k(pinonaldehyde + Cl) = (2.4 ± 1.4) × 10−10 cm3 molecule−1 s−1. In contrast to previous studies which suggested enhanced kinetic reactivity for pinonaldehyde compared to other aldehydes, the results from both the OH‐ and Cl‐initiated oxidation of pinonaldehyde in the present work are in line with predictions using structure‐activity relationships. © 1999 John Wiley & Sons, Inc., Int J Chem Kinet 31: 291–301, 1999  相似文献   

16.
Rate coefficients for the reactions of OH with n, s, and iso-butanol have been measured over the temperature range 298 to ∼650 K. The rate coefficients display significant curvature over this temperature range and bridge the gap between previous low-temperature measurements with a negative temperature dependence and higher temperature shock tube measurements that have a positive temperature dependence. In combination with literature data, the following parameterizations are recommended: k1,OH + n-butanol(T) = (3.8 ± 10.4) × 10−19T2.48 ± 0.37exp ((840 ± 161)/T) cm3 molecule−1 s−1 k2,OH + s-butanol(T) = (3.5 ± 3.0) × 10−20T2.76 ± 0.12exp ((1085 ± 55)/T) cm3 molecule−1 s−1 k3,OH + i-butanol(T) = (5.1 ± 5.3) × 10−20T2.72 ± 0.14exp ((1059 ± 66)/T) cm3 molecule−1 s−1 k4,OH + t-butanol(T) = (8.8 ± 10.4) × 10−22T3.24 ± 0.15exp ((711 ± 83)/T) cm3 molecule−1 s−1 Comparison of the current data with the higher shock tube measurements suggests that at temperatures of ∼1000 K, the OH yields, primarily from decomposition of β-hydroxyperoxy radicals, are ∼0.3 (n-butanol), ∼0.3 (s-butanol) and ∼0.2 (iso-butanol) with β-hydroxyperoxy decompositions generating OH, and a butene as the main products. The data suggest that decomposition of β-hydroxyperoxy radicals predominantly occurs via OH elimination.  相似文献   

17.
Self‐reported sun exposure is commonly used in research, but how well this represents actual sun exposure is poorly understood. From February to July 2011, a volunteer sample (n = 47) of older adults (≥45 years) in Canberra, Australia, answered brief questions on time outdoors (weekdays and weekends) and natural skin color. They subsequently maintained a sun diary and wore an ultraviolet radiation (UVR) digital dosimeter for 7 days. Melanin density was estimated using reflectance spectrophotometry; lifetime sun damage was assessed using silicone casts of the back of the hand; and serum 25‐hydroxyvitamin D (25(OH)D) concentration was assayed. Questionnaire‐reported time outdoors correlated significantly with diary‐recorded time outdoors (Spearman correlation rs = 0.66; 95% CI 0.46, 0.80; < 0.001) and UVR dosimeter dose (r= 0.46; 95% CI 0.18, 0.68; = 0.003), but not 25(OH)D concentration (rs = 0.24; 95% CI ?0.05, 0.50; = 0.10). Questionnaire‐reported untanned skin color correlated significantly with measured melanin density at the inner upper arm (rs = 0.49; 95% CI 0.24, 0.68; < 0.001). In a multiple linear regression model, statistically significant predictors of 25(OH)D concentration were self‐reported frequency of physical activity, skin color and recent osteoporosis treatment (R2 = 0.54). In this study, brief questionnaire items provided valid rankings of sun exposure and skin color, and enabled the development of a predictive model for 25(OH)D concentration.  相似文献   

18.
By using relative rate methods, rate constants for the gas‐phase reactions of OH and NO3 radicals with propanal, butanal, pentanal, and hexanal have been measured at 296 ± 2 K and atmospheric pressure of air. By using methyl vinyl ketone as the reference compound, the rate constants obtained for the OH radical reactions (in units of 10−12 cm3 molecule−1 s−1) were propanal, 20.2 ± 1.4; butanal, 24.7 ± 1.5; pentanal, 29.9 ± 1.9; and hexanal, 31.7 ± 1.5. By using methacrolein and 1‐butene as the reference compounds, the rate constants obtained for the NO3 radical reactions (in units of 10−15 cm3 molecule−1 s−1) were propanal, 7.1 ± 0.4; butanal, 11.2 ± 1.5; pentanal, 14.1 ± 1.6; and hexanal, 14.9 ± 1.3. The dominant tropospheric loss process for the aldehydes studied here is calculated to be by reaction with the OH radical, with calculated lifetimes of a few hours during daytime. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 79–84, 2000  相似文献   

19.
The pulsed laser photolysis‐resonance fluorescence technique has been used to determine the absolute rate coefficient for the Cl atom reaction with a series of ketones, at room temperature (298 ± 2) K and in the pressure range 15–60 Torr. The rate coefficients obtained (in units of cm3 molecule−1 s−1) are: acetone (3.06 ± 0.38) × 10−12, 2‐butanone (3.24 ± 0.38) × 10−11, 3‐methyl‐2‐butanone (7.02 ± 0.89) × 10−11, 4‐methyl‐2‐pentanone (9.72 ± 1.2) × 10−11, 5‐methyl‐2‐hexanone (1.06 ± 0.14) × 10−10, chloroacetone (3.50 ± 0.45) × 10−12, 1,1‐dichloroacetone (4.16 ± 0.57) × 10−13, and 1,1,3‐trichloroacetone (<2.4 × 10−12). © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 62–66, 2000  相似文献   

20.
Carbonyls play an important role in atmospheric chemistry due to their formation in the photooxidation of biogenic and anthropogenic volatile organic compounds and their high atmospheric reactivity. The Cl‐initiated kinetics of two α‐diketones (2,3‐pentanedione (PTD) and 2,3‐hexanedione (HEX)) have been determined as well as the OH + HEX rate constant using atmospheric simulation chamber experiments and the relative rate method. Up to three different reference compounds were used to assess robust results. The following rate constants (in cm3 molecule−1 s−1) have been obtained at 298 K: k (Cl + PTD) = (1.6 ± 0.2) × 10−11, k (Cl + HEX) = (8.8 ± 0.4) × 10−11, and k (OH + HEX) = (3.6 ± 0.7) × 10−12 with a global uncertainty of 30%. The present determinations of Cl‐ and OH‐ reaction rate constants for HEX constitute first measurements. Using the present measurements, a recently improved structure–activity relationship for Cl + ketone reactions has been updated by introducing an F (–COCO–) factor of 8.33 × 10−4. Atmospheric lifetime calculations indicate that chlorine‐initiated oxidation may be a significant α‐diketone sink in the marine‐boundary layer or in places where high Cl concentrations may be found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号