首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \(1\le p\le q<\infty \) and let X be a p-convex Banach function space over a \(\sigma \)-finite measure \(\mu \). We combine the structure of the spaces \(L^p(\mu )\) and \(L^q(\xi )\) for constructing the new space \(S_{X_p}^{\,q}(\xi )\), where \(\xi \) is a probability Radon measure on a certain compact set associated to X. We show some of its properties, and the relevant fact that every q-summing operator T defined on X can be continuously (strongly) extended to \(S_{X_p}^{\,q}(\xi )\). Our arguments lead to a mixture of the Pietsch and Maurey-Rosenthal factorization theorems, which provided the known (strong) factorizations for q-summing operators through \(L^q\)-spaces when \(1 \le q \le p\). Thus, our result completes the picture, showing what happens in the complementary case \(1\le p\le q\).  相似文献   

2.
Let \((M,\Omega )\) be a connected symplectic 4-manifold and let \(F=(J,H) :M\rightarrow \mathbb {R}^2\) be a completely integrable system on M with only non-degenerate singularities. Assume that F does not have singularities with hyperbolic blocks and that \(p_1,\ldots ,p_n\) are the focus–focus singularities of F. For each subset \(S=\{i_1,\ldots ,i_j\}\), we will show how to modify F locally around any \(p_i, i \in S\), in order to create a new integrable system \(\widetilde{F}=(J, \widetilde{H}) :M \rightarrow \mathbb {R}^2\) such that its classical spectrum \(\widetilde{F}(M)\) contains j smooth curves of singular values corresponding to non-degenerate transversally hyperbolic singularities of \(\widetilde{F}\). Moreover the focus–focus singularities of \(\widetilde{F}\) are precisely \(p_i\), \(i \in \{1,\ldots ,n\} \setminus S\). The proof is based on Eliasson’s linearization theorem for non-degenerate singularities, and properties of the Hamiltonian Hopf bifurcation.  相似文献   

3.
This paper is concerned with the existence of positive solution to a class of singular fourth order elliptic equation of Kirchhoff type
$$\begin{aligned} \triangle ^2 u-\lambda M(\Vert \nabla u\Vert ^2)\triangle u-\frac{\mu }{\vert x\vert ^4}u=\frac{h(x)}{u^\gamma }+k(x)u^\alpha , \end{aligned}$$
under Navier boundary conditions, \(u=\triangle u=0\). Here \(\varOmega \subset {\mathbf {R}}^N\), \(N\ge 1\) is a bounded \(C^4\)-domain, \(0\in \varOmega \), h(x) and k(x) are positive continuous functions, \(\gamma \in (0,1)\), \(\alpha \in (0,1)\) and \(M:{\mathbf {R}}^+\rightarrow {\mathbf {R}}^+\) is a continuous function. By using Galerkin method and sharp angle lemma, we will show that this problem has a positive solution for \(\lambda > \frac{\mu }{\mu ^*m_0}\) and \(0<\mu <\mu ^*\). Here \(\mu ^*=\Big (\frac{N(N-4)}{4}\Big )^2\) is the best constant in the Hardy inequality. Besides, if \(\mu =0\), \(\lambda >0\) and hk are Lipschitz functions, we show that this problem has a positive smooth solution. If \(h,k\in C^{2,\,\theta _0}(\overline{\varOmega })\) for some \(\theta _0\in (0,1)\), then this problem has a positive classical solution.
  相似文献   

4.
Let \(\textsf {G}\) be a Carnot group of homogeneous dimension M and \(\Delta \) its horizontal sublaplacian. For \(\alpha \in (0,M)\) we show that operators of the form \(H_\alpha :=(-\Delta )^\alpha +V\) have no singular spectrum, under generous assumptions on the multiplication operator V. The proof is based on commutator methods and Hardy inequalities.  相似文献   

5.
Let G be a Polish locally compact group acting on a Polish space \({{X}}\) with a G-invariant probability measure \(\mu \). We factorize the integral with respect to \(\mu \) in terms of the integrals with respect to the ergodic measures on X, and show that \(\mathrm {L}^{p}({{X}},\mu )\) (\(1\le p<\infty \)) is G-equivariantly isometrically lattice isomorphic to an \({\mathrm {L}^p}\)-direct integral of the spaces \(\mathrm {L}^{p}({{X}},\lambda )\), where \(\lambda \) ranges over the ergodic measures on X. This yields a disintegration of the canonical representation of G as isometric lattice automorphisms of \(\mathrm {L}^{p}({{X}},\mu )\) as an \({\mathrm {L}^p}\)-direct integral of order indecomposable representations. If \(({{X}}^\prime ,\mu ^\prime )\) is a probability space, and, for some \(1\le q<\infty \), G acts in a strongly continuous manner on \(\mathrm {L}^{q}({{X}}^\prime ,\mu ^\prime )\) as isometric lattice automorphisms that leave the constants fixed, then G acts on \(\mathrm {L}^{p}({{X}}^{\prime },\mu ^{\prime })\) in a similar fashion for all \(1\le p<\infty \). Moreover, there exists an alternative model in which these representations originate from a continuous action of G on a compact Hausdorff space. If \(({{X}}^\prime ,\mu ^\prime )\) is separable, the representation of G on \(\mathrm {L}^p(X^\prime ,\mu ^\prime )\) can then be disintegrated into order indecomposable representations. The notions of \({\mathrm {L}^p}\)-direct integrals of Banach spaces and representations that are developed extend those in the literature.  相似文献   

6.
We continue the study of stability of solving the interior problem of tomography. The starting point is the Gelfand–Graev formula, which converts the tomographic data into the finite Hilbert transform (FHT) of an unknown function f along a collection of lines. Pick one such line, call it the x-axis, and assume that the function to be reconstructed depends on a one-dimensional argument by restricting f to the x-axis. Let \(I_1\) be the interval where f is supported, and \(I_2\) be the interval where the Hilbert transform of f can be computed using the Gelfand–Graev formula. The equation to be solved is \(\left. {\mathcal {H}}_1 f=g\right| _{I_2}\), where \({\mathcal {H}}_1\) is the FHT that integrates over \(I_1\) and gives the result on \(I_2\), i.e. \({\mathcal {H}}_1: L^2(I_1)\rightarrow L^2(I_2)\). In the case of complete data, \(I_1\subset I_2\), and the classical FHT inversion formula reconstructs f in a stable fashion. In the case of interior problem (i.e., when the tomographic data are truncated), \(I_1\) is no longer a subset of \(I_2\), and the inversion problems becomes severely unstable. By using a differential operator L that commutes with \({\mathcal {H}}_1\), one can obtain the singular value decomposition of \({\mathcal {H}}_1\). Then the rate of decay of singular values of \({\mathcal {H}}_1\) is the measure of instability of finding f. Depending on the available tomographic data, different relative positions of the intervals \(I_{1,2}\) are possible. The cases when \(I_1\) and \(I_2\) are at a positive distance from each other or when they overlap have been investigated already. It was shown that in both cases the spectrum of the operator \({\mathcal {H}}_1^*{\mathcal {H}}_1\) is discrete, and the asymptotics of its eigenvalues \(\sigma _n\) as \(n\rightarrow \infty \) has been obtained. In this paper we consider the case when the intervals \(I_1=(a_1,0)\) and \(I_2=(0,a_2)\) are adjacent. Here \(a_1 < 0 < a_2\). Using recent developments in the Titchmarsh–Weyl theory, we show that the operator L corresponding to two touching intervals has only continuous spectrum and obtain two isometric transformations \(U_1\), \(U_2\), such that \(U_2{\mathcal {H}}_1 U_1^*\) is the multiplication operator with the function \(\sigma (\lambda )\), \(\lambda \ge (a_1^2+a_2^2)/8\). Here \(\lambda \) is the spectral parameter. Then we show that \(\sigma (\lambda )\rightarrow 0\) as \(\lambda \rightarrow \infty \) exponentially fast. This implies that the problem of finding f is severely ill-posed. We also obtain the leading asymptotic behavior of the kernels involved in the integral operators \(U_1\), \(U_2\) as \(\lambda \rightarrow \infty \). When the intervals are symmetric, i.e. \(-a_1=a_2\), the operators \(U_1\), \(U_2\) are obtained explicitly in terms of hypergeometric functions.  相似文献   

7.
Given a simple digraph D on n vertices (with \(n\ge 2\)), there is a natural construction of a semigroup of transformations \(\langle D\rangle \). For any edge (ab) of D, let \(a\rightarrow b\) be the idempotent of rank \(n-1\) mapping a to b and fixing all vertices other than a; then, define \(\langle D\rangle \) to be the semigroup generated by \(a \rightarrow b\) for all \((a,b) \in E(D)\). For \(\alpha \in \langle D\rangle \), let \(\ell (D,\alpha )\) be the minimal length of a word in E(D) expressing \(\alpha \). It is well known that the semigroup \(\mathrm {Sing}_n\) of all transformations of rank at most \(n-1\) is generated by its idempotents of rank \(n-1\). When \(D=K_n\) is the complete undirected graph, Howie and Iwahori, independently, obtained a formula to calculate \(\ell (K_n,\alpha )\), for any \(\alpha \in \langle K_n\rangle = \mathrm {Sing}_n\); however, no analogous non-trivial results are known when \(D \ne K_n\). In this paper, we characterise all simple digraphs D such that either \(\ell (D,\alpha )\) is equal to Howie–Iwahori’s formula for all \(\alpha \in \langle D\rangle \), or \(\ell (D,\alpha ) = n - \mathrm {fix}(\alpha )\) for all \(\alpha \in \langle D\rangle \), or \(\ell (D,\alpha ) = n - \mathrm {rk}(\alpha )\) for all \(\alpha \in \langle D\rangle \). We also obtain bounds for \(\ell (D,\alpha )\) when D is an acyclic digraph or a strong tournament (the latter case corresponds to a smallest generating set of idempotents of rank \(n-1\) of \(\mathrm {Sing}_n\)). We finish the paper with a list of conjectures and open problems.  相似文献   

8.
We consider the discrete fractional sequential difference \(\Delta _{1+a-\mu }^{\nu }\Delta _a^{\mu }f(t)\), where \(t\in \mathbb {N}_{3-\mu -\nu +a}\), in two separate cases, where in each case we require that \(\mu +\nu \in (1,2)\). In the first case, we show that when \(\mu \in (0,1)\) and \(\nu \in (1,2)\) it follows that the condition \(\Delta _{1+a-\mu }^{\nu }\Delta _a^{\mu }f(t)\ge 0\) implies that f is an increasing map when we impose that \(f(a)\ge 0\), \(\Delta f(a)\ge 0\), and \(\Delta f(a+1)\ge 0\). On the other hand, when \(\mu \in (1,2)\) and \(\nu \in (0,1)\) we demonstrate that the situation is very different and that this type of monotonicity result only holds when restricted to a proper subregion of the \((\mu ,\nu )\)-parameter space coupled with some additional auxiliary conditions.  相似文献   

9.
Denote by \(C_m\) the cyclic group of order m. Let \({\mathcal {R}}(C_m)\) be its real representation ring, and \(\Delta (C_m)\) its augmentation ideal. In this paper, we give an explicit \({\mathbb {Z}}\)-basis for the n-th power \(\Delta ^{n}(C_m)\) and determine the isomorphism class of the n-th augmentation quotient \(\Delta ^n(C_m)/\Delta ^{n+1}(C_m)\) for each positive integer n.  相似文献   

10.
Let A be a 0-sectorial operator with a bounded \(H^\infty (\Sigma _\sigma )\)-calculus for some \(\sigma \in (0,\pi ),\) e.g. a Laplace type operator on \(L^p(\Omega ),\, 1< p < \infty ,\) where \(\Omega \) is a manifold or a graph. We show that A has a \(\mathcal {H}^\alpha _2(\mathbb {R}_+)\) Hörmander functional calculus if and only if certain operator families derived from the resolvent \((\lambda - A)^{-1},\) the semigroup \(e^{-zA},\) the wave operators \(e^{itA}\) or the imaginary powers \(A^{it}\) of A are R-bounded in an \(L^2\)-averaged sense. If X is an \(L^p(\Omega )\) space with \(1 \le p < \infty \), R-boundedness reduces to well-known estimates of square sums.  相似文献   

11.
Let k be an odd positive integer, L a lattice on a regular positive definite k-dimensional quadratic space over \(\mathbb {Q}\), \(N_L\) the level of L, and \(\mathscr {M}(L)\)  be the linear space of \(\theta \)-series attached to the distinct classes in the genus of L. We prove that, for an odd prime \(p|N_L\), if \(L_p=L_{p,1}\,\bot \, L_{p,2}\), where \(L_{p,1}\) is unimodular, \(L_{p,2}\) is (p)-modular, and \(\mathbb {Q}_pL_{p,2}\) is anisotropic, then \(\mathscr {M}(L;p):=\) \(\mathscr {M}(L)\) \(+T_{p^2}.\) \(\mathscr {M}(L)\)  is stable under the Hecke operator \(T_{p^2}\). If \(L_2\) is isometric to \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle 2\varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}1\\ 1&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) with \(\varepsilon \in \mathbb {Z}_2^{\times }\) and \(\kappa :=\frac{k-1}{2}\), then \(\mathscr {M}(L;2):=T_{2^2}.\mathscr {M}(L)+T_{2^2}^2.\,\mathscr {M}(L)\) is stable under the Hecke operator \(T_{2^2}\). Furthermore, we determine some invariant subspaces of the cusp forms for the Hecke operators.  相似文献   

12.
In this paper, we establish a multiplicity result of nontrivial weak solutions for the problem \((-\Delta )^{\alpha } u +u= h(u)\)    in \(\Omega _{\lambda }\), \(u=0\)    on \(\partial \Omega _{\lambda }\), where \(\Omega _{\lambda }=\lambda \Omega \), \(\Omega \) is a smooth and bounded domain in \({\mathbb {R}}^N, N>2\alpha \), \(\lambda \) is a positive parameter, \(\alpha \in (0,1)\), \((-\Delta )^{\alpha }\) is the fractional Laplacian and the nonlinear term h(u) has subcritical growth. We use minimax methods, the Ljusternick–Schnirelmann and Morse theories to get multiplicity results depending on the topology of \(\Omega \).  相似文献   

13.
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates \(f_r(z):=f(rz)~(r<1)\). We show that this is not the case for the de Branges–Rovnyak spaces \(\mathcal{H}(b)\). More precisely, we exhibit a space \(\mathcal{H}(b)\) in which the polynomials are dense and a function \(f\in \mathcal{H}(b)\) such that \(\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty \). On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces \(\mathcal{H}(b)\). If \((h_n)\) is a sequence in \(H^\infty \) such that \(\Vert h_n\Vert _{H^\infty }\le 1\) and \(h_n(0)\rightarrow 1\), then \(\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0\) for all \(f\in \mathcal{H}(b)\). Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of \(H^\infty \), then the polynomials are dense in \(\mathcal{H}(b)\).  相似文献   

14.
We consider the Anderson polymer partition function
$$\begin{aligned} u(t):=\mathbb {E}^X\left[ e^{\int _0^t \mathrm {d}B^{X(s)}_s}\right] \,, \end{aligned}$$
where \(\{B^{x}_t\,;\, t\ge 0\}_{x\in \mathbb {Z}^d}\) is a family of independent fractional Brownian motions all with Hurst parameter \(H\in (0,1)\), and \(\{X(t)\}_{t\in \mathbb {R}^{\ge 0}}\) is a continuous-time simple symmetric random walk on \(\mathbb {Z}^d\) with jump rate \(\kappa \) and started from the origin. \(\mathbb {E}^X\) is the expectation with respect to this random walk. We prove that when \(H\le 1/2\), the function u(t) almost surely grows asymptotically like \(e^{\lambda t}\), where \(\lambda >0\) is a deterministic number. More precisely, we show that as t approaches \(+\infty \), the expression \(\{\frac{1}{t}\log u(t)\}_{t\in \mathbb {R}^{>0}}\) converges both almost surely and in the \(\hbox {L}^1\) sense to some positive deterministic number \(\lambda \). For \(H>1/2\), we first show that \(\lim _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) exists both almost surely and in the \(\hbox {L}^1\) sense and equals a strictly positive deterministic number (possibly \(+\infty \)); hence, almost surely u(t) grows asymptotically at least like \(e^{\alpha t}\) for some deterministic constant \(\alpha >0\). On the other hand, we also show that almost surely and in the \(\hbox {L}^1\) sense, \(\limsup _{t\rightarrow \infty } \frac{1}{t\sqrt{\log t}}\log u(t)\) is a deterministic finite real number (possibly zero), hence proving that almost surely u(t) grows asymptotically at most like \(e^{\beta t\sqrt{\log t}}\) for some deterministic positive constant \(\beta \). Finally, for \(H>1/2\) when \(\mathbb {Z}^d\) is replaced by a circle endowed with a Hölder continuous covariance function, we show that \(\limsup _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) is a deterministic finite positive real number, hence proving that almost surely u(t) grows asymptotically at most like \(e^{c t}\) for some deterministic positive constant c.
  相似文献   

15.
Let \(\Omega \) be a smooth bounded domain in \({\mathbb {R}}^N\) (\(N>2\)) and \(\delta (x):=\text {dist}\,(x,\partial \Omega )\). Assume \(\mu \in {\mathbb {R}}_+, \nu \) is a nonnegative finite measure on \(\partial \Omega \) and \(g \in C(\Omega \times {\mathbb {R}}_+)\). We study positive solutions of
$$\begin{aligned} -\Delta u - \frac{\mu }{\delta ^2} u = g(x,u) \text { in } \Omega , \qquad \text {tr}^*(u)=\nu . \end{aligned}$$
(P)
Here \(\text {tr}^*(u)\) denotes the normalized boundary trace of u which was recently introduced by Marcus and Nguyen (Ann Inst H Poincaré Anal Non Linéaire, 34, 69–88, 2017). We focus on the case \(0<\mu < C_H(\Omega )\) (the Hardy constant for \(\Omega \)) and provide qualitative properties of positive solutions of (P). When \(g(x,u)=u^q\) with \(q>0\), we prove that there is a critical value \(q^*\) (depending only on \(N, \mu \)) for (P) in the sense that if \(q<q^*\) then (P) possesses a solution under a smallness assumption on \(\nu \), but if \(q \ge q^*\) this problem admits no solution with isolated boundary singularity. Existence result is then extended to a more general setting where g is subcritical [see (1.28)]. We also investigate the case where g is linear or sublinear and give an existence result for (P).
  相似文献   

16.
An n-normal operator may be defined as an \(n \times n\) operator matrix with entries that are mutually commuting normal operators and an operator \(T \in \mathcal {B(H)}\) is quasi-nM-hyponormal (for \(n \in \mathbb {N}\)) if it is unitarily equivalent to an \(n \times n\) upper triangular operator matrix \((T_{ij})\) acting on \(\mathcal {K}^{(n)}\), where \(\mathcal {K}\) is a separable complex Hilbert space and the diagonal entries \(T_{jj}\) \((j = 1,2,\ldots , n)\) are M-hyponormal operators in \(\mathcal {B(K)}\). This is an extended notion of n-normal operators. We prove a necessary and sufficient condition for an \(n \times n\) triangular operator matrix to have Bishop’s property \((\beta )\). This leads us to study the hyperinvariant subspace problem for an \(n \times n\) triangular operator matrix.  相似文献   

17.
We show that any open orientable surface can be properly embedded in \(\mathbb {H}^3\) as a constant mean curvature H-surface for \(H\in [0,1)\). We obtain this result by proving a version of the bridge principle at infinity for H-surfaces. We also show that any open orientable surface can be nonproperly embedded in \(\mathbb {H}^3\) as a minimal surface.  相似文献   

18.
The packing chromatic number \(\chi _{\rho }(G)\) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets \(V_i\), \(i\in [k]\), where each \(V_i\) is an i-packing. In this paper, we investigate for a given triple (abc) of positive integers whether there exists a graph G such that \(\omega (G) = a\), \(\chi (G) = b\), and \(\chi _{\rho }(G) = c\). If so, we say that (abc) is realizable. It is proved that \(b=c\ge 3\) implies \(a=b\), and that triples \((2,k,k+1)\) and \((2,k,k+2)\) are not realizable as soon as \(k\ge 4\). Some of the obtained results are deduced from the bounds proved on the packing chromatic number of the Mycielskian. Moreover, a formula for the independence number of the Mycielskian is given. A lower bound on \(\chi _{\rho }(G)\) in terms of \(\Delta (G)\) and \(\alpha (G)\) is also proved.  相似文献   

19.
We consider the positive solutions of the nonlinear eigenvalue problem \(-\Delta _{\mathbb {H}^n} u = \lambda u + u^p, \) with \(p=\frac{n+2}{n-2}\) and \(u \in H_0^1(\Omega ),\) where \(\Omega \) is a geodesic ball of radius \(\theta _1\) on \(\mathbb {H}^n.\) For radial solutions, this equation can be written as an ordinary differential equation having n as a parameter. In this setting, the problem can be extended to consider real values of n. We show that if \(2<n<4\) this problem has a unique positive solution if and only if \(\lambda \in \left( n(n-2)/4 +L^*\,,\, \lambda _1\right) .\) Here \(L^*\) is the first positive value of \(L = -\ell (\ell +1)\) for which a suitably defined associated Legendre function \(P_{\ell }^{-\alpha }(\cosh \theta ) >0\) if \(0 < \theta <\theta _1\) and \(P_{\ell }^{-\alpha }(\cosh \theta _1)=0,\) with \(\alpha = (2-n)/2\).  相似文献   

20.
Let \(v = (v_1, \ldots , v_n)\) be a vector in \(\mathbb {R}^n {\setminus } \{ 0 \}\). Consider the Laplacian on \(\mathbb {R}^n\) with drift \(\Delta _{v} = \sum _{i = 1}^n \Big ( \frac{\partial ^2}{\partial x_i^2} + 2 v_i \frac{\partial }{\partial x_i} \Big )\) and the measure \(d\mu (x) = e^{2 \langle v, x \rangle } dx\), with respect to which \(\Delta _{v}\) is self-adjoint. Let d and \(\nabla \) denote the Euclidean distance and the gradient operator on \(\mathbb {R}^n\). Consider the space \((\mathbb {R}^n, d, d\mu )\), which has the property of exponential volume growth. We obtain weak type (1, 1) for the Riesz transform \(\nabla (- \Delta _{v} )^{-\frac{1}{2}}\) and for the heat maximal operator, with respect to \(d\mu \). Further, we prove that the uncentered Hardy–Littlewood maximal operator is bounded on \(L^p\) for \(1 < p \le +\infty \) but not of weak type (1, 1) if \(n \ge 2\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号