首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion emission due to the sputtering of metallic cadmium by α particles from 238Pu is studied. Experiments are carried out in helium at different cadmium foil temperatures (from 20 to 280°C) and gas pressures (from 75 to 2200 torr). The sputtering of the metallic cadmium causes the emission of Cd(II) excited ions in the 4d 95s 22 D 3/2, 5/2 and 4d 106s 2 S 1/2 states. Above 160°C, the population of these stares grows exponentially. At a temperature of 240°C and a helium pressure in the chamber of 600 torr, the sputtering ratio of metallic cadmium is found to be 6.26×10−14 g per α particle; i.e., one α particle knocks out about 108 cadmium atoms from the foil. From spectroscopy and microphotography examinations of the metallic sample surface, a two-step model of ion emission is suggested. The model involves (1) the formation of a high-temperature wedge, which ejects a cadmium droplet, and (2) self-diffusion of displaced cadmium atoms in the droplet toward the surface.  相似文献   

2.
The luminescence kinetics of the Cd II ion at a wavelength of 441.6 nm has been studied experi-mentally in a high-pressure He-Cd mixture in the presence of Ar, Ne, Xe, and CCl4 impurities. Cadmium ions were excited through the bombardment of a cadmium foil heated up to 240°C by a pulsed electron beam with an electron energy of 150 keV, a pulse duration of 3 ns, and a current of 500 A. The constants of collisional quenching of the Cd II 5s 2 2 D 5/2 level by Ar, Ne, and Xe atoms and CCl4 molecules and the integral luminescence quenching constants of this level in the helium medium by these impurity gases have been determined. The constants of collisional quenching appeared to be 8.1 × 10−12 (Ar), 1.2 × 10−12 (Xe), 1.5 × 10−13 (Ne), and 1.8 × 10−10 cm3/s (CCl4, for λ = 325 nm), while the integral constants were found to be, respectively, 4.1 × 10−11, 3.4 × 10−11, 9.5 × 10−12, 1.4 × 10−9 cm3/s for Ar, Ne, Xe, and CCl4 at a buffer gas pressure of 1 atm. Original Russian Text ? A.I. Miskevich, Liu Tao, 2009, published in Optika i Spektroskopiya, 2009, Vol. 107, No. 1, pp. 45–49.  相似文献   

3.
An experimental investigation into emission by plasmas from Cd and crystalline CdAl2Se4 targets irradiated with a pulse-periodic YAG: Nd3+ laser is presented. The laser operates at a pulse width of 20 ns and provides 1−2×109 W/cm2 at the focus. The spectral and time characteristics of the emission are examined. The main findings are as follows: (1) The strongest lines correspond to the transitions from the 63 S 1 and 53 D 2 levels of Cd I. (2) With the Cd target, the recombination bottlenecks are 52 D 5/2 of Cd II (E up=20.11 eV) and 83 D 1, 3 of Cd I (E up=8.60–8.65 eV). (3) The average electron temperature outside the core of the plume is 0.64 eV. (4) For the 508.6-nm line of Cd I, the high filling rate of the 63 S 1 upper energy level may be related to the rapid recombination of cadmium ions with electrons via the intermediate levels of Cd at 6.82 and 7.24 eV.  相似文献   

4.
Helium, hydrogen, and their isotopes are the simplest monoatomic and diatomic molecules. It is relatively easy to describe their properties using the basic principles of quantum mechanics. In condensed matter physics, hydrogen and helium serve as the models for the condensed matter properties at extreme conditions so that both experi- mental and theoretical physicists pay much attention to the study of their properties[1], especially the insulator-metal transition of hydrogen[2]. The aim to st…  相似文献   

5.
Hugoniot curves and shock temperatures of gas helium with initial temperature 293 K and three initial pressures 0.6, 1.2, and 5.0 MPa were measured up to 15000 K using a two-stage light-gas gun and transient radiation pyrometer. It was found that the calculated Hugoniot EOS of gas helium at the same initial pressure using Saha equation with Debye-Hückel correction was in good agreement with the experimental data. The curve of the calculated shock wave velocity with the particle velocity of gas helium which is shocked from the initial pressure 5 MPa and temperature 293 K, i.e., theDu relation,D=C 0u (u<10 km/s, λ=1.32) in a low pressure region, is approximately parallel with the fittedDu (λ=1.36) of liquid helium from the experimental data of Nellis et al. Our calculations show that the Hugoniot parameter λ is independent of the initial density p{in0}. TheDu curves of gas helium will transfer to another one and approach a limiting value of compression when their temperature elevates to about 18000 K and the ionization degree of the shocked gas helium reaches 10−3.  相似文献   

6.
The dynamic Stark effect of the spectral lines Hβ and of the neutral helium lines λ=402.6 nm (23 P 0−53 D) and λ=438.8 nm (21 P 0−51 D) emitted from a discharge tube was used for probing rf electric fields in a transverse waveguide. Calculations accounting for the pertubation of the atomic states by strong unidirectional fields prove to be suitable in order to interprete the main experimental results. If the waveguide is terminated with a metallic reflector and the plasma in the discharge tube becomes overdense—then representing a slightly permeable mirror—a resonant enhancement of the electric field strength may be achieved by tuning. This enhancement is well recognizable in the spectral line contours.  相似文献   

7.
Diffusion and solubility of helium in Ce0.8Gd0.2O1.9 − δ ceramics (δ = 0, 0.015) with a submicrocrystal structure are studied by thermodesorption of helium from preliminarily saturated (in the gas phase) crystals at temperatures of 613 and 673 K in the saturated pressure range 0–21 MPa. It is shown that, in this ceramics (δ = 0), the defect-trap diffusion mechanism operates. The main positions for dissolution are neutral anion vacancies formed as a result of thermal dissociation of impurity-vacancy complexes and saturated up to ∼1 × 1019 cm−3 at P = 6 MPa and T = 673 K. The dissociation energy of the complex and the energy of helium dissolution in the neutral anion vacancy are estimated at ∼2 eV and below −0.3 eV, respectively.  相似文献   

8.
On the basis of the spectral line intensity relaxation during the plasma decay, fifty six spectral lines between 219 nm and 330 nm in the cadmium (Cd) spectrum were identified as Cd III (doubly ionized) or Cd IV (triply ionized) lines. The measured Stark widths of twelve, the most intense spectral lines around 315±15 nm with well defined profiles, are presented. Investigated spectral lines originate from the high lying energy levels, not classified up to now. A linear low-pressure pulsed arc was used as an optically thin plasma source. A pulsed discharge was produced in a pyrex discharge tube. Helium was chosen as the carrier gas. The cadmium atoms were sputtered from the thin cadmium cylindrical plates located in the homogeneous axial part of the discharge tube. The helium plasma was operated at electron temperatures up to 19 000 K and 1.1 × 1023 m-3 electron density. The stepwise ionization processes via the high lying singly ionized (Cd II) energy levels, populated well due to the Penning and charge exchange effects, provide high density of the Cd III (and Cd IV) ions in our helium plasma. The temporal evolutions of the spectral line intensities were monitored using a spectrograph and an ICCD camera as a highly sensitive detection system.  相似文献   

9.
The decay rate of2 D 5/2 level of Cd II has been measured by the magnetic-field power-dip method. The decay rate at the zero-pressure limit is found to be 2.4·106s−1. The calculated collision cross section for excited Cd ions with He atoms equals 0.91·10−15 cm2. This work was supported by the Institute of Quantum Electronics. WAT Warszawa, within the project 06.2.3.  相似文献   

10.
Sturm  M.  Schl?sser  M.  Lewis  R. J.  Bornschein  B.  Drexlin  G.  Telle  H. H. 《Laser Physics》2010,20(2):493-507
We have recorded Raman spectra for all hydrogen isotopologues, using a CW Nd:YVO4 laser (5 W output power at 532 nm) and a high-throughput (f/1.8) spectrograph coupled to a Peltier-cooled (200 K) CCD-array detector (512 × 2048 pixels). A (static) gas cell was used in all measurements. We investigated (i) “pure” fillings of the homonuclear isotopologues H2, D2, and T2; (ii) equilibrated binary fillings of H2 + D2, H2 + T2, and D2 + T2, thus providing the heteronuclear isotopologues HD, HT, and DT in a controlled manner; and (iii) general mixtures containing all isotopologues at varying concentration levels. Cell fillings within the total pressure range 13–985 mbar were studied, in order to determine the dynamic range of the Raman system and the detection limits for all isotopologues. Spectra were recorded for an accumulation period of 1000 s. The preliminary data evaluation was based on simple peak-height analysis of the ro-vibrational Q1-branches, yielding 3σ measurement sensitivities of 5 × 10−3, 7 × 10−3, and 25 × 10−3 mbar for the tritium-containing isotopologues T2, DT, and HT, respectively. These three isotopologues are the relevant ones for the KATRIN experiment and in the ITER fusion fuel cycle. While the measurement reported here were carried out with static-gas fillings, the cells are also ready for use with flowing-gas samples.  相似文献   

11.
The high current electron beam losses have been studied experimentally with 0.7 J, 40 fs, 6 1019 Wcm-2 laser pulses interacting with Al foils of thicknesses 10-200 μm. The fast electron beam characteristics and the foil temperature were measured by recording the intensity of the electromagnetic emission from the foils rear side at two different wavelengths in the optical domain, ≈407 nm (the second harmonic of the laser light) and ≈500 nm. The experimentally observed fast electron distribution contains two components: one relativistic tail made of very energetic (T h tail ≈ 10 MeV) and highly collimated (7° ± 3°) electrons, carrying a small amount of energy (less than 1% of the laser energy), and another, the bulk of the accelerated electrons, containing lower-energy (T h bulk=500 ± 100 keV) more divergent electrons (35 ± 5°), which transports about 35% of the laser energy. The relativistic component manifests itself by the coherent 2ω0 emission due to the modulation of the electron density in the interaction zone. The bulk component induces a strong target heating producing measurable yields of thermal emission from the foils rear side. Our data and modeling demonstrate two mechanisms of fast electron energy deposition: resistive heating due to the neutralizing return current and collisions of fast electrons with plasma electrons. The resistive mechanism is more important at shallow target depths, representing an heating rate of 100 eV per Joule of laser energy at 15 μm. Beyond that depth, because of the beam divergence, the incident current goes under 1012 Acm-2 and the collisional heating becomes more important than the resistive heating. The heating rate is of only 1.5 eV per Joule at 50 μm depth.  相似文献   

12.
The conductivity of GaAs structures δ-doped with tin on the vicinal and singular faces was investigated in strong electric fields up to E=104 V/cm and temperatures in the range 4.2 K <T<300 K. The measurements were performed in the dark and under illumination with visible light. Long-time photoconductivity of 2D electrons with threshold T c ≈240 K was observed in samples which were δ-doped with tin on the vicinal face. A strong electric field not only quenches photoconductivity, but also increases the resistance of the structures at temperatures T<T c by several orders of magnitude with respect to the dark resistance. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 5, 326–330 (10 March 1996)  相似文献   

13.
Explicit expressions have been derived for the volume dependence of electron-phonon coupling strength (λ) and the Coulomb pseudopotential (μ*) considering the variation of Fermi momentum (κ F) and Debye temperature (θ D) with volume. Ashcroft’s model pseudopotential and RPA form of dielectric screening have been used for obtaining pressure dependence of transition temperature (T C) and the logarithmic volume derivative (Φ) of the effective interaction strength (N 0 V) for metallic glass superconductor Mg70Zn30. It has been observed that T C of the metallic glass Mg70Zn30 decreases rapidly with increase of pressure and the superconducting phase disappears at about 30% decrease of volume, for which the μ* curve shows a minimum and an elbow is formed in the Φ graph.  相似文献   

14.
By the method of helium thermal desorption from submicrocrystalline palladium presaturated in the gaseous phase, the diffusion coefficient D eff and solubility coefficient C eff of helium are measured in the range P=0–3 MPa and T=293–508 K. The pressure dependence of C eff flattens at high pressures. At low saturation pressures, the temperature dependences of the diffusion and solubility coefficients may be divided into (1) high-temperature (400–508 K) and (2) low-temperature (293–400 K) ranges described by the exponentials D 1, 2=D 0exp (−E 1, 2 D /kT) and C 1, 2=C 0exp (−E 1, 2 S /kT). The energies of diffusion activation are E 2 D =0.0036±0.0015 eV and E 1 D =0.33±0.03 eV, and the solution energies are E 2 S =−0.025±0.008 eV and E 1 S =0.086±0.008 eV in the low-and high-temperature ranges, respectively. Mechanisms behind the diffusion and solution of helium are discussed.  相似文献   

15.
The decay rates of the3 D 1 level of I–II and the 3s 2 level of neon have been measured by the magnetic-field power dip method. The decay rate at the zero-pressure limit is found to be 7.1 MHz/2π for the3 D 1 level. The collision cross-section for excited I ions with helium atoms equals 0.19×10−15 cm2. This work was supported by project MR-1.5-1.05.  相似文献   

16.
Constants of quenching of the CdII ion Beutler levels by argon were experimentally determined. Excited cadmium ions in the 5s 2 2 D 5/2, 3/2 states were produced by sputtering metal cadmium with alpha-particles at a temperature of 240°C. The quenching constants for the 5s 2 2 D 5/2 and 5s 2 2 D 3/2 CdII ion levels were found to be 1.3×10?10 and 1.8×10?10 cm3 s?1, respectively.  相似文献   

17.
Using single-crystal samples of Bi2Te3 bombarded by 5-MeV electrons at a temperature of 250 K, we study the electrical resistivity and the Hall effect in the temperature range 1.7–370 K and the Shubnikov-de Haas effect at T=4.2 K in magnetic fields up to 14 T. We find that electron bombardment of Bi2Te3 crystals results in a transition from the metallic p-type state to the metallic state with a Fermi surface. Annealing at 350 K eliminates the radiation defects and restores the p-type metallic conductance. Zh. éksp. Teor. Fiz. 113, 1787–1798 (May 1998)  相似文献   

18.
The parameters of an electron beam generated in helium in the pressure range p = 10−4−12 atm are studied. Nanosecond high-voltage pulses are applied to a gap between a tubular cathode and planar anode, which is made of 45-μm-thick AlBe foil. Behind the anode, an electron beam is detected at a helium pressure of 12 atm. The pressure dependence of the beam current amplitude shows three peaks at p ≈ 0.01, ≈ 0.07, and ≈ 3 atm. The beam-induced glow of a luminescent film placed behind the foil and the discharge glow at different helium pressures in the gas-filled diode are photographed.  相似文献   

19.
The comprehensive comparison between calculated bulk non-equilibrium properties of hydrogen–helium isotopomeric mixtures and experiment that has previously been carried out for H2–helium mixtures [2004, Molec. Phys., submitted] has been extended to mixtures of HD, D2 and T2 with 3He and 4He. For HD–4He mixtures, comparison is also made, where possible, with previous calculations of Köhler and Schaefer [1983, Physica A, 120, 185]. The phenomena examined herein include low temperature interaction second virial coefficients, binary diffusion and thermal conductivity coefficients, rotational relaxation, transport property field effects and flow birefringence. Scattering calculations have been carried out for the HD–He PES of Schaefer and Köhler [1985, Physica A, 129, 469], and for both the Köhler–Schaefer and Tao [1994, J. chem. Phys., 100, 4947] potential surfaces for the D2–He and T2–He interactions. Comparisons between calculated and experimental results for HD, D2, T2–He mixtures confirm the conclusion, reached earlier from the H2–He comparisons, that these potential surfaces are very close to the correct one for the hydrogen–helium interaction, and that the small differences between them cannot be distinguished readily by measurements of bulk gas phenomena unless the attendant experimental uncertainties are better than ±0.3%.  相似文献   

20.
Present status of the experiment TGV II which is devoted to the measurement of double-beta decay of 106Cd is given. The low background spectrometer TGV II is installed in the Modane Underground Laboratory and has been running from February 2005 with approx 10 grams of 106Cd enriched at 75%. After an analysis of 3736 hours of experimental data the new improved half-life limit for 2νEC/EC decay of 106Cd (0 g.s. + → 0 g.s. + ) is given as T 1 2/2ν > 4.8 × 1019 years (90% CL). The search for 2νEC/EC decay of 106Cd to the excited states of 106Pd allows to determine the limits of the half-lives T 1 2/2ν (0 g.s. + → 2 1 + ) > 3.9 × 1019 years (90% CL) and T 1 2/2ν (0 g.s. + → 0 1 + ) > 5.8 × 1019 years (90% CL). Presented by I. Štekl at the Workshop on calculation of double-beta-decay matrix elements (MEDEX’05), Corfu, Greece, September 26–29, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号