首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this note we consider the time of the collision τ for n independent Brownian motions X 1 t ,...,X t n with drifts a 1,...,a n , each starting from x = (x 1,...,x n ), where x 1 < ... < x n . We show the exact asymptotics of ${\mathbb{P}}_{\bf x}(\tau > t) = Ch({\bf x})t^{-\alpha} {\rm e}^{-\gamma t}(1 + o(1))$ as t → ∞ and identify C, h(x), α, γ in terms of the drifts.  相似文献   

2.
Let n ≥ 3, 0 < m ≤ (n ? 2)/n, p > max(1, (1 ? m)n/2), and ${0 \le u_0 \in L_{loc}^p(\mathbb{R}^n)}$ satisfy ${{\rm lim \, inf}_{R\to\infty}R^{-n+\frac{2}{1-m}} \int_{|x|\le R}u_0\,dx = \infty}$ . We prove the existence of unique global classical solution of u t = Δu m , u > 0, in ${\mathbb{R}^n \times (0, \infty), u(x, 0) = u_0(x)}$ in ${\mathbb{R}^n}$ . If in addition 0 < m < (n ? 2)/n and u 0(x) ≈ A|x|?q as |x| → ∞ for some constants A > 0, qn/p, we prove that there exist constants α, β, such that the function v(x, t) = t α u(t β x, t) converges uniformly on every compact subset of ${\mathbb{R}^n}$ to the self-similar solution ψ(x, 1) of the equation with ψ(x, 0) = A|x|?q as t → ∞. Note that when m = (n ? 2)/(n + 2), n ≥ 3, if ${g_{ij} = u^{\frac{4}{n+2}}\delta_{ij}}$ is a metric on ${\mathbb{R}^n}$ that evolves by the Yamabe flow ?g ij /?t = ?Rg ij with u(x, 0) = u 0(x) in ${\mathbb{R}^n}$ where R is the scalar curvature, then u(x, t) is a global solution of the above fast diffusion equation.  相似文献   

3.
Erd?s and Selfridge [3] proved that a product of consecutive integers can never be a perfect power. That is, the equation x(x?+?1)(x?+?2)...(x?+?(m???1))?=?y n has no solutions in positive integers x,m,n where m, n?>?1 and y?∈?Q. We consider the equation $$ (x-a_1)(x-a_2) \ldots (x-a_k) + r = y^n $$ where 0?≤?a 1?<?a 2?<???<?a k are integers and, with r?∈?Q, n?≥?3 and we prove a finiteness theorem for the number of solutions x in Z, y in Q. Following that, we show that, more interestingly, for every nonzero integer n?>?2 and for any nonzero integer r which is not a perfect n-th power for which the equation admits solutions, k is bounded by an effective bound.  相似文献   

4.
For the nonlinear wave equationu tt -Nu +G(t,u, u t ) = ? in Hilbert space, with associated homogeneous initial data, we show how ana priori bound of the form ∫ 0 T G(τ,u, u τ)∥2 ≤ κ ∫ 0 T ∥?(τ)∥2 leads to upper and lower bounds for ∥u∥ in terms of ∥?∥. An application to nonlinear elastodynamics is presented.  相似文献   

5.
We characterize the additive operators preserving rank-additivity on symmetry matrix spaces. LetS n(F) be the space of alln×n symmetry matrices over a fieldF with 2,3 ∈F *, thenT is an additive injective operator preserving rank-additivity onS n(F) if and only if there exists an invertible matrixU∈M n(F) and an injective field homomorphism ? ofF to itself such thatT(X)=cUX ?UT, ?X=(xij)∈Sn(F) wherecF *,X ?=(?(x ij)). As applications, we determine the additive operators preserving minus-order onS n(F) over the fieldF.  相似文献   

6.
Let {δt}t>0 be a non-isotropic dilation group on R n . Let τ: R n → [0,∞) be a continuous function that vanishes only at the origin and satisfies τ(δ t x) = tτ(x), t > 0, xR n . In this paper we obtain two-sided inequalities for spherical means of the form $\int_{S^{n-1}}\tau(r_1\omega_1,\cdots,r_n\omega_n)^{-\alpha}d\sigma (\omega),$ where α is a positive constant, and r1,…, rn are positive parameters.  相似文献   

7.
A boundary value problem for a singularly perturbed parabolic convection-diffusion equation on an interval is considered. The higher order derivative in the equation is multiplied by a parameter ? that can take arbitrary values in the half-open interval (0, 1]. The first derivative of the initial function has a discontinuity of the first kind at the point x 0. For small values of ?, a boundary layer with the typical width of ? appears in a neighborhood of the part of the boundary through which the convective flow leaves the domain; in a neighborhood of the characteristic of the reduced equation outgoing from the point (x 0, 0), a transient (moving in time) layer with the typical width of ?1/2 appears. Using the method of special grids that condense in a neighborhood of the boundary layer and the method of additive separation of the singularity of the transient layer, special difference schemes are designed that make it possible to approximate the solution of the boundary value problem ?-uniformly on the entire set $\bar G$ , approximate the diffusion flow (i.e., the product ?(?/?x)u(x, t)) on the set $\bar G^ * = \bar G\backslash \{ (x_0 ,0)\} $ , and approximate the derivative (?/?x)u(x, t) on the same set outside the m-neighborhood of the boundary layer. The approximation of the derivatives ?2(?2/?x 2)u(x, t) and (?/?t)u(x, t) on the set $\bar G^ * $ is also examined.  相似文献   

8.
Letf(X; T 1, ...,T n) be an irreducible polynomial overQ. LetB be the set ofb teZ n such thatf(X;b) is of lesser degree or reducible overQ. Let ?={F j}{F j } j?1 be a Følner sequence inZ n — that is, a sequence of finite nonempty subsetsF j ?Z n such that for eachvteZ n , $\mathop {lim}\limits_{j \to \infty } \frac{{\left| {F_j \cap (F_j + \upsilon )} \right|}}{{\left| {F_j } \right|}} = 1$ Suppose ? satisfies the extra condition that forW a properQ-subvariety ofP n ?A n and ?>0, there is a neighborhoodU ofW(R) in the real topology such that $\mathop {lim sup}\limits_{j \to \infty } \frac{{\left| {F_j \cap U} \right|}}{{\left| {F_j } \right|}}< \varepsilon $ whereZ n is identified withA n (Z). We prove $\mathop {lim}\limits_{j \to \infty } \frac{{\left| {F_j \cap B} \right|}}{{\left| {F_j } \right|}} = 0$ .  相似文献   

9.
The equation ?2u/?t?x + up?u/?x = uq describing a nonstationary process in semiconductors, with parameters p and q that are a nonnegative integer and a positive integer, respectively, and satisfy p + q ≥ 2, is considered in the half-plane (x, t) ∈ ? × (0,∞). All in all, fourteen families of its exact solutions are constructed for various parameter values, and qualitative properties of these solutions are noted. One of these families is defined for all parameter values indicated above.  相似文献   

10.
Let T be a bijective map on ? n such that both T and T ???1 are Borel measurable. For any θ?∈?? n and any real n ×n positive definite matrix Σ, let N (θ, Σ) denote the n-variate normal (Gaussian) probability measure on ? n with mean vector θ and covariance matrix Σ. Here we prove the following two results: (1) Suppose $N(\boldsymbol{\theta}_j, I)T^{-1}$ is gaussian for 0?≤?j?≤?n, where I is the identity matrix and {θ j ???θ 0, 1?≤?j?≤?n } is a basis for ? n . Then T is an affine linear transformation; (2) Let $\Sigma_j = I + \varepsilon_j \mathbf{u}_j \mathbf{u}_j^{\prime},$ 1?≤?j?≤?n where ε j ?>???1 for every j and {u j , 1?≤?j?≤?n } is a basis of unit vectors in ? n with $\mathbf{u}_j^{\prime}$ denoting the transpose of the column vector u j . Suppose N(0, I)T ???1 and $N (\mathbf{0}, \Sigma_j)T^{-1},$ 1?≤?j?≤?n are gaussian. Then $T(\mathbf{x}) = \sum\nolimits_{\mathbf{s}} 1_{E_{\mathbf{s}}}(\mathbf{x}) V \mathbf{s} U \mathbf{x}$ a.e. x, where s runs over the set of 2 n diagonal matrices of order n with diagonal entries ±1, U, V are n ×n orthogonal matrices and { E s } is a collection of 2 n Borel subsets of ? n such that { E s } and {V s U (E s )} are partitions of ? n modulo Lebesgue-null sets and for every j, $V \mathbf{s} U \Sigma_j (V \mathbf{s} U)^{-1}$ is independent of all s for which the Lebesgue measure of E s is positive. The converse of this result also holds. Our results constitute a sharpening of the results of Nabeya and Kariya (J. Multivariate Anal. 20 (1986) 251–264) and part of Khatri (Sankhyā Ser. A 49 (1987) 395–404).  相似文献   

11.
We will deal with the following problem: Let M be an n×n matrix with real entries. Under which conditions the family of inequalities: x∈? n ;x?0;M·x?0has non–trivial solutions? We will prove that a sufficient condition is given by mi,j+mj,i?0 (1?i,j?n); from this result we will derive an elementary proof of the existence theorem for Variational Inequalities in the framework of Monotone Operators.  相似文献   

12.
We consider the blow-up of the solution to a semilinear heat equation with nonlinear boundary condition. We establish conditions on nonlinearities sufficient to guarantee that u(x, t) exists for all time t > 0 as well as conditions on data forcing the solution u(x, t) to blow up at some finite time t*. Moreover, an upper bound for t* is derived. Under somewhat more restrictive conditions, lower bounds for t* are also derived.  相似文献   

13.
A natural exponential family (NEF)F in ? n ,n>1, is said to be diagonal if there existn functions,a 1,...,a n , on some intervals of ?, such that the covariance matrixV F (m) ofF has diagonal (a 1(m 1),...,a n (m n )), for allm=(m 1,...,m n ) in the mean domain ofF. The familyF is also said to be irreducible if it is not the product of two independent NEFs in ? k and ? n-k , for somek=1,...,n?1. This paper shows that there are only six types of irreducible diagonal NEFs in ? n , that we call normal, Poisson, multinomial, negative multinomial, gamma, and hybrid. These types, with the exception of the latter two, correspond to distributions well established in the literature. This study is motivated by the following question: IfF is an NEF in ? n , under what conditions is its projectionp(F) in ? k , underp(x 1,...,x n )∶=(x 1,...,x k ),k=1,...,n?1, still an NEF in ? k ? The answer turns out to be rather predictable. It is the case if, and only if, the principalk×k submatrix ofV F (m 1,...,m n ) does not depend on (m k+1,...,m n ).  相似文献   

14.
In this paper we define an extended quasi-homogeneous polynomial system d x/dt = Q = Q 1 + Q 2 + ... + Q δ , where Q i are some 3-dimensional quasi-homogeneous vectors with weight α and degree i, i = 1, . . . ,δ. Firstly we investigate the limit set of trajectory of this system. Secondly let Q T be the projective vector field of Q. We show that if δ ≤ 3 and the number of closed orbits of Q T is known, then an upper bound for the number of isolated closed orbits of the system is obtained. Moreover this upper bound is sharp for δ = 3. As an application, we show that a 3-dimensional polynomial system of degree 3 (resp. 5) admits 26 (resp. 112) isolated closed orbits. Finally, we prove that a 3-dimensional Lotka-Volterra system has no isolated closed orbits in the first octant if it is extended quasi-homogeneous.  相似文献   

15.
In a large number of physical phenomena, we find propagating surfaces which need mathematical treatment. In this paper, we present the theory of kinematical conservation laws (KCL) in a space of arbitrary dimensions, i.e., d-D KCL, which are equations of evolution of a moving surface Ωt in d-dimensional x-space, where x = (x 1, x 2,..., x d) ∈ Rd. The KCL are derived in a specially defined ray coordinates (ξ = (ξ1, ξ2,..., ξd?1), t), where ξ1, ξ2,..., ξd?1 are surface coordinates on Ωt and t is time. KCL are the most general equations in conservation form, governing the evolution of Ωt with physically realistic singularities. A very special type of singularity is a kink, which is a point on Ωt when Ωt is a curve in R2 and is a curve on Ωt when it is a surface in R3. Across a kink the normal n to Ωt and normal velocity m on Ωt are discontinuous.  相似文献   

16.
Recently, Philippe et al. (C.R. Acad. Sci. Paris. Ser. I 342, 269–274, 2006; Theory Probab. Appl., 2007, to appear) introduced a new class of time-varying fractionally integrated filters A(d)x t =∑ j=0 a j (t)x t?j , B(d)x t =∑ j=0 b j (t)x t?j depending on arbitrary given sequence d=(d t ,t∈?) of real numbers, such that A(d)?1=B(?d), B(d)?1=A(?d) and such that when d t d is a constant, A(d)=B(d)=(1?L) d is the usual fractional differencing operator. Philippe et al. studied partial sums limits of (nonstationary) filtered white noise processes X t =B(d)ε t and Y t =A(d)ε t in the case when (1) d is almost periodic having a mean value $\bar{d}\in (0,1/2)$ , or (2) d admits limits d ±=lim? t→±∞ d t ∈(0,1/2) at t=±∞. The present paper extends the above mentioned results of Philippe et al. into two directions. Firstly, we consider the class of time-varying processes with infinite variance, by assuming that ε t ,t∈? are iid rv’s in the domain of attraction of α-stable law (1<α≤2). Secondly, we combine the classes (1) and (2) of sequences d=(d t ,t∈?) into a single class of sequences d=(d t ,t∈?) admitting possibly different Cesaro limits $\bar{d}_{\pm}\in(0,1-(1/\alpha))$ at ±∞. We show that partial sums of X t and Y t converge to some α-stable self-similar processes depending on the asymptotic parameters $\bar{d}_{\pm}$ and having asymptotically stationary or asymptotically vanishing increments.  相似文献   

17.
We prove that Basic Arithmetic, BA, has the de Jongh property, i.e., for any propositional formula A(p 1,..., p n ) built up of atoms p 1,..., p n , BPC \({\vdash}\) A(p 1,..., p n ) if and only if for all arithmetical sentences B 1,..., B n , BA \({\vdash}\) A(B 1,..., B n ). The technique used in our proof can easily be applied to some known extensions of BA.  相似文献   

18.
Let f(x) denote a system of n nonlinear functions in m variables, mn. Recently, a linearization of f(x) in a box x has been suggested in the form L(x)=Ax+b where A is a real n×m matrix and b is an interval n-dimensional vector. Here, an improved linearization L(x,y)=Ax+By+b, xx, yy is proposed where y is a p-dimensional vector belonging to the interval vector y while A and B are real matrices of appropriate dimensions and b is a real vector. The new linearization can be employed in solving various nonlinear problems: global solution of nonlinear systems, bounding the solution set of underdetermined systems of equations or systems of equalities and inequalities, global optimization. Numerical examples illustrating the superiority of L(x,y)=Ax+By+b over L(x)=Ax+b have been solved for the case where the problem is the global solution of a system of nonlinear equations (n=m).  相似文献   

19.
Let {W i (t), t ∈ ?+}, i = 1, 2, be two Wiener processes, and let W 3 = {W 3(t), t? + 2 } be a two-parameter Brownian sheet, all three processes being mutually independent. We derive upper and lower bounds for the boundary noncrossing probability P f = P{W 1(t 1) + W 2(t 2) + W 3(t) + f(t) ≤ u(t), t? + 2 }, where f, u : ? + 2 ? are two general measurable functions. We further show that, for large trend functions γf > 0, asymptotically, as γ → ∞, P γf is equivalent to \( {P}_{\gamma}\underset{\bar{\mkern6mu}}{{}_f} \) , where \( \underset{\bar{\mkern6mu}}{f} \) is the projection of f onto some closed convex set of the reproducing kernel Hilbert space of the field W(t) = W 1(t 1) + W 2(t 2) + W 3(t). It turns out that our approach is also applicable for the additive Brownian pillow.  相似文献   

20.
We prove the existence of a family Ω(n) of 2 c (where c is the cardinality of the continuum) subgraphs of the unit distance graph (E n , 1) of the Euclidean space E n , n ≥ 2, such that (a) for each graph G ? Ω(n), any homomorphism of G to (E n , 1) is an isometry of E n ; moreover, for each subgraph G 0 of the graph G obtained from G by deleting less than c vertices, less than c stars, and less than c edges (we call such a subgraph reduced), any homomorphism of G 0 to (E n , 1) is an isometry (of the set of the vertices of G 0); (b) each graph G ? Ω(n) cannot be homomorphically mapped to any other graph of the family Ω(n), and the same is true for each reduced subgraph of G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号