首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Gas-phase reaction enthalpies related to the individual steps of three phenolic antioxidants action mechanisms – hydrogen atom transfer (HAT), single-electron transfer–proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) for four tocopherols and seven chromans – were calculated using DFT/B3LYP method. For α-tocopherol, one of the chromans and phenol, reaction enthalpies in water were computed. In comparison to gas phase, water causes severe changes in the energetics of studied compounds antioxidant action. From the thermodynamic point of view, entering SPLET mechanism represents the most probable process in water.  相似文献   

2.
《Comptes Rendus Chimie》2015,18(2):149-159
The aim of this work is to investigate the elongation effect of the conjugated links of the 7–8 double bond of trans-resveratrol and its analogs on the antioxidant activity in vacuo and water using a quantum chemistry calculation by the Density Functional Theory (DFT) method. H atom transfer (HAT), single-electron transfer–proton transfer (SET–PT) and sequential proton loss electron transfer (SPLET) mechanisms were investigated. The highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and the spin density were calculated. The results reveal that the elongation of the conjugated links plays an important role in promoting the antioxidant properties of molecules because of its lowering effect on BDE, spin density, AIP, and PA values. The higher antioxidant activity of 3,4 dihydroxystilbene (A4) and trans,trans-3,4-dihydroxybistyryl (B4) may be from the abstraction of the hydrogen atoms of the ortho-position hydroxyls. This abstraction can occur continuously to form a semiquinone structure, or even a quinone structure. On the other hand, the compounds bearing the 4,4′-DHS skeleton exhibit strong antioxidant activity due to their para-quinone structure. The results indicate correspondences between the theoretical and the experimental results. Moreover, our calculations suggest that the HAT mechanism is the most important and dominant mechanism in vacuo, the SPLET mechanism is the most thermodynamically favourable pathway in water, while the SET–PT mechanism is not preferred in all the environments studied.  相似文献   

3.
Density functional theory (DFT) and time-dependent DFT (TD-DFT) have been employed to elucidate the radical scavenging capacity and the UV–Vis spectral property of several chalcones and analogous aurones. Three main antioxidant mechanisms, hydrogen atom transfer (HAT), electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) were investigated. The results indicate that all the studied compounds adopt a fully planar conformation in their neutral, radical, cationic as well as anionic forms. 2′-OH plays important role in the stabilization of phenolic radicals due to the formation of intramolecular hydrogen bonds (IHBs). Introduction of electron-donating substituent on B-ring is helpful for improving the activity. For the considered compounds, HAT is proposed as the thermodynamically favored mechanism in gas phase and nonpolar environment, while SPLET is preferred in polar media. The results confirmed the crucial role of hydroxyl group on A-ring, especially on position 5′/5, in terms of the radical scavenging ability. The absorption spectra of title compounds were successfully simulated and the lowest energy transitions predominantly correspond to the π-π* transitions from HOMO to LUMO with charge transfer (CT) character.  相似文献   

4.
Reactions of phenol and hydroxyl radical were studied under the aqueous environment to investigate the antioxidant characters of phenolic compounds. M06‐2X/6‐311 + G(d,p) calculations were carried out, where proton transfers via water molecules were examined carefully. Stepwise paths from phenol + OH + (H2O)n (n = 3, 7, and 12) to the phenoxyl radical (Ph O) via dihydroxycyclohexadienyl radicals (ipso, ortho, meta, and para OH‐adducts) were obtained. In those paths, the water dimer was computed to participate in the bond interchange along hydrogen bonds. The concerted path corresponding to the hydrogen atom transfer (HAT, apparently Ph OH + OH → Ph O + H2O) was found. In the path, the hydroxyl radical located on the ipso carbon undergoes the charge transfer to prompt the proton (not hydrogen) transfer. While the present new mechanism is similar to the sequential proton loss electron transfer (SPLET) one, the former is of the concerted character. Tautomerization reactions of ortho or para (OH)C6H5=O + (H2O)n → C6H4(OH)2(H2O)n were traced with n = 2, 3, 4, and 14. The n = 3 (and n = 14) model of ortho and para was calculated to be most likely by the strain‐less hydrogen‐bond circuit.  相似文献   

5.
The reaction enthalpies related to the individual steps of two phenolic antioxidants action mechanisms, single electron transfer-proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET), for 30 meta and para-substituted phenols (ArOH) were calculated using DFT/B3LYP method. These mechanisms represent the alternative ways to the extensively studied hydrogen atom transfer (HAT) mechanism. Except the comparison of calculated reaction enthalpies with available experimental and/or theoretical values, obtained enthalpies were correlated with Hammett constants. We have found that electron-donating substituents induce the rise in the enthalpy of proton dissociation (PDE) from ArOH+* radical cation (second step in SET-PT) and in the proton affinities of phenoxide ions ArO- (reaction enthalpy of the first step in SPLET). Electron-withdrawing groups cause the increase in the reaction enthalpies of the processes where electron is abstracted, i.e., in the ionization potentials of ArOH (first step in SET-PT) and in the enthalpy of electron transfer from ArO- (second step in SPLET). Found results indicate that all dependences of reaction enthalpies on Hammett constants of the substituents are linear. The calculations of liquid-phase reaction enthalpies for several para-substituted phenols indicate that found trends hold also in water, although substituent effects are weaker. From the thermodynamic point of view, entering SPLET mechanism represents the most probable process in water.  相似文献   

6.
《Comptes Rendus Chimie》2019,22(8):585-598
A series of 15 novel 1,3,4-thiadiazole amide derivatives containing a protocatechuic acid moiety were synthesized and structurally characterized. In addition, the corresponding imino (4) and amino (5) analogues of a phenyl-substituted 1,3,4-thiadiazole amide derivative 3a were prepared to compare the effects of the structural changes on the radical-scavenging activity. The obtained compounds were examined for their antioxidative potential by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. In addition, selected compounds were studied by density functional theory (DFT) and cyclic voltammetry experiments. The tested compounds showed high potential to scavenging DPPH radical and ABTS radical cation compared with the referent antioxidants ascorbic acid and nordihydroguaiaretic acid (NDGA). On the basis of the calculated thermodynamic parameters, it can be concluded that the sequential proton loss electron transfer (SPLET) mechanism represents the most probable reaction path in a polar solvent for DPPH radical–scavenging activity. On the other hand, the single electron transfer followed by proton transfer (SET-PT) can be a likely mechanistic pathway in the case of an ABTS radical cation.  相似文献   

7.
[reaction: see text] Rate constants for reaction of alpha-tocopherol, 2,2,5,7,8-pentamethyl-6-hydroxychroman, and 2,6-di-tert-butyl-4-methylphenol with 2,2-diphenyl-1-picrylhydrazyl radical were measured in solvents of different polarity and H-bond basicity. In ionization supporting solvents besides hydrogen atom transfer (HAT), the kinetics of the process is partially governed by sequential proton loss electron transfer (SPLET). Addition of acetic acid reduces the rate by eliminating SPLET to leave only HAT, while addition of water increases the rate by enhancing phenol deprotonation.  相似文献   

8.
Mechanistic insight into the homolytic cleavage of the O? H bond of water by the heteronuclear oxide cluster [Ga2Mg2O5].+ has been derived from state‐of‐the‐art gas‐phase experiments in conjunction with quantum chemical calculations. Three pathways have been identified computationally. In addition to the conventional hydrogen‐atom transfer (HAT) to the radical center of a bridging oxygen atom, two mechanistically distinct proton‐coupled electron‐transfer (PCET) processes have been identified. The energetically most favored path involves initial coordination of the incoming water ligand to a magnesium atom followed by an intramolecular proton transfer to the lone‐pair of the bridging oxygen atom. This step, which is accomplished by an electronic reorganization, generates two structurally equivalent OH groups either of which can be liberated, in agreement with labeling experiments.  相似文献   

9.
10.
The reactions of alkylperoxyl radicals with phenols have remained difficult to investigate in water. We describe herein a simple and reliable method based on the inhibited autoxidation of water/THF mixtures, which we calibrated against pulse radiolysis. With this method we measured the rate constants kinh for the reactions of 2‐tetrahydrofuranylperoxyl radicals with reference compounds: urate, ascorbate, ferrocenes, 2,2,5,7,8‐pentamethyl‐6‐chromanol, Trolox, 6‐hydroxy‐2,5,7,8‐tetramethylchroman‐2‐acetic acid, 2,6‐di‐tert‐butyl‐4‐methoxyphenol, 4‐methoxyphenol, catechol and 3,5‐di‐tert‐butylcatechol. The role of pH was investigated: the value of kinh for Trolox and 4‐methoxyphenol increased 11‐ and 50‐fold from pH 2.1 to 12, respectively, which indicate the occurrence of a SPLET‐like mechanism. H(D) kinetic isotope effects combined with pH and solvent effects suggest that different types of proton‐coupled electron transfer (PCET) mechanisms are involved in water: less electron‐rich phenols react at low pH by concerted electron‐proton transfer (EPT) to the peroxyl radical, whereas more electron‐rich phenols and phenoxide anions react by multi‐site EPT in which water acts as proton relay.  相似文献   

11.
Antioxidants scavenge reactive oxygen species and, therefore, are vitally important in the living cells. The antioxidant properties of eupatilin have recently been reported. In this article, the reactions of eupatilin with the hydroxyl radical (OH?) in solution are studied using density functional theory calculations and the polarizable continuum model. Three mechanisms are considered including: sequential electron proton transfer (SEPT), sequential proton loss electron transfer (SPLET), and hydrogen abstraction (HA). Three solvents with different polarities, that is, benzene, methanol, and water, are used to investigate the effect of the environment on the mechanisms. The relative Gibbs free energies and enthalpies corresponding to different mechanisms are calculated. Our results show that SEPT is thermodynamically favored in aqueous solution. Once the eupatilin anion is produced, the second step in SPLET mechanism is thermodynamically favored in methanol and water. The HA mechanism is thermodynamically favored in gas, benzene, methanol, and water. This mechanism is more energetically favorable to occur in a more polar solvent. The natural bond orbital charges and spin densities as well as the singly occupied molecular orbital are then analyzed. It is concluded that the HA process is governed by proton coupled electron transfer mechanism. The attack of the radical takes place preferentially at position 7 of eupatilin. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The thermal gas‐phase reactions of [Al2ZnO4].+ with methane have been explored by using FT‐ICR mass spectrometry complemented by high‐level quantum chemical calculations. Two competitive mechanisms, that is, hydrogen‐atom transfer (HAT) and proton‐coupled electron transfer (PCET) are operative. Interestingly, while the HAT process is influenced by the polarity of the transition structure, both the ionic nature of the metal–oxygen bond and the structural rigidity of the cluster oxide affect the PCET pathway. As compared to the previously reported homonuclear [Al2O3].+ and [ZnO].+, the heteronuclear oxide [Al2ZnO4].+ exhibits a much higher chemoselectivity towards methane. The electronic origins of the doping effect have been explored.  相似文献   

13.
The rates of reaction of 1,1-diphenyl-2-picrylhydrazyl (dpph*) radicals with curcumin (CU, 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), dehydrozingerone (DHZ, "half-curcumin"), and isoeugenol (IE) have been measured in methanol and ethanol and in two non-hydroxylic solvents, dioxane and ethyl acetate, which have about the same hydrogen-bond-accepting abilities as the alcohols. The reactions of all three substrates are orders of magnitude faster in the alcohols, but these high rates can be suppressed to values essentially equal to those in the two non-hydroxylic solvents by the addition of acetic acid. The fast reactions in alcohols are attributed to the reaction of dpph* with the CU, DHZ, and IE anions (see J. Org. Chem. 2003, 68, 3433), a process which we herein name sequential proton loss electron transfer (SPLET). The most acidic group in CU is the central keto-enol moiety. Following CU's ionization to a monoanion, ET from the [-(O)CCHC(O)-](-) moiety to dpph* yields the neutral [-(O)CCHC(O)-]* radical moiety which will be strongly electron withdrawing. Consequently, a phenolic proton is quickly lost into the alcohol solvent. The phenoxide anion so formed undergoes charge migration to produce a neutral phenoxyl radical and the keto-enol anion, i.e., the same product as would be formed by a hydrogen atom transfer (HAT) from the phenolic group of the CU monoanion. The SPLET process cannot occur in a nonionizing solvent. The controversy as to whether the central keto-enol moiety or the peripheral phenolic hydroxyl groups of CU are involved in its radical trapping (antioxidant) activity is therefore resolved. In ionizing solvents, electron-deficient radicals will react with CU by a rapid SPLET process but in nonionizing solvents, or in the presence of acid, they will react by a slower HAT process involving one of the phenolic hydroxyl groups.  相似文献   

14.
Free radical scavenging and inhibitory potency against cyclooxygenase-2 (COX-2) by two abundant colon metabolites of polyphenols, i.e., 3-hydroxyphenylacetic acid (3-HPAA) and 4-hydroxyphenylpropionic acid (4-HPPA) were theoretically studied. Different free radical scavenging mechanisms are investigated in water and pentyl ethanoate as a solvent. By considering electronic properties of scavenged free radicals, hydrogen atom transfer (HAT) and sequential proton loss electron transfer (SPLET) mechanisms are found to be thermodynamically probable and competitive processes in both media. The Gibbs free energy change for reaction of inactivation of free radicals indicates 3-HPAA and 4-HPPA as potent scavengers. Their reactivity toward free radicals was predicted to decrease as follows: hydroxyl >> alkoxyls > phenoxyl  peroxyls >> superoxide. Shown free radical scavenging potency of 3-HPAA and 4-HPPA along with their high μM concentration produced by microbial colon degradation of polyphenols could enable at least in situ inactivation of free radicals. Docking analysis with structural forms of 3-HPAA and 4-HPPA indicates dianionic ligands as potent inhibitors of COX-2, an inducible enzyme involved in colon carcinogenesis. Obtained results suggest that suppressing levels of free radicals and COX-2 could be achieved by 3-HPAA and 4-HPPA indicating that these compounds may contribute to reduced risk of colon cancer development.  相似文献   

15.
In order to gain insight into the influence of the H+-accepting terminal ligand in high-valent oxidant mediated proton coupled electron transfer (PCET) reactions, the reactivity of a high valent nickel–fluoride complex [NiIII(F)(L)] ( 2 , L=N,N’-(2,6-dimethylphenyl)-2,6-pyridinecarboxamidate) with substituted phenols was explored. Analysis of kinetic data from these reactions (Evans–Polanyi, Hammett, and Marcus plots, and KIE measurements) and the formed products show that 2 reacted with electron rich phenols through a hydrogen atom transfer (HAT, or concerted PCET) mechanism and with electron poor phenols through a stepwise proton transfer/electron transfer (PT/ET) reaction mechanism. The analogous complexes [NiIII(Z)(L)] (Z=Cl, OCO2H, O2CCH3, ONO2) reacted with all phenols through a HAT mechanism. We explore the reason for a change in mechanism with the highly basic fluoride ligand in 2 . Complex 2 was also found to react one to two orders of magnitude faster than the corresponding analogous [NiIII(Z)(L)] complexes. This was ascribed to a high bond dissociation free energy value associated with H−F (135 kcal mol−1), which is postulated to be the product formed from PCET oxidation by 2 and is believed to be the driving force for the reaction. Our findings show that high-valent metal–fluoride complexes represent a class of highly reactive PCET oxidants.  相似文献   

16.
The H.‐atom transfer (HAT) reaction is investigated in the gas phase, starting from two different entrance channels, O2.+/CH2X2 and CH2X2.+/O2 (X=F, Cl), that correspond to a step of hydride transfer and to HAT, respectively. Analysis of the spin and charge along the reaction pathway shows that HAT occurs through the same reacting configuration, irrespective of whether the reactants are formed within the complex or are free isolated species.  相似文献   

17.
We have scrutinized five novel silylphenol antioxidants, including 2-silylphenol ( 1 ), 4-silylphenol ( 2 ), 2,6-disilylphenol ( 3 ), 2,4-disilylphenol ( 4 ), and 2,4,6-trisilylphenol ( 5 ), at M06/6–311++G** level of theory. To evaluate the antioxidant efficiency, the electronic effects on O─H bond dissociation energy (BDE) and vertical ionization potential (IPv) of 1 – 5 are investigated, which are mainly governed by electronic effects. The conductor-like polarized continuum model (CPCM) is applied to measure the antioxidant capacity in the solution phase. The results show that antioxidants with the lowest BDE and IPv values can efficiently act via hydrogen atom transfer (HAT) and single electron transfer (SET) mechanisms, respectively. The stability of resulting radicals is measured by nucleus independent chemical shift (NICS) index, natural bond orbital (NBO) analysis, and nucleophilicity (N) index. The BDE shows lower values in the gas phase with respect to water, while water exhibits lower IPv values than gas. Structure 5 turns out as the most efficient antioxidant. The overall order of antioxidant efficiency in both gas and water phases is 5 > 2 > 3 > 4 > 1 .  相似文献   

18.
In the past few years, there has been a certain interest in nitrogen-centered radicals, biologically important radicals that play a vital role in various processes and constitute many important biological molecules. In this paper, there was an attempt to bridge a gap in the literature that concerns the antiradical potency of monoamine neurotransmitters (dopamine, epinephrine, and norepinephrine) and their metabolites towards these radicals. The most probable radical quenching mechanism was determined for each radical out of three common mechanisms, namely Hydrogen Atom Transfer (HAT), Single Electron Transfer followed by the Proton Transfer (SET-PT), and Sequential Proton Loss Electron Transfer (SPLET). Marcus’ theory was then used to determine the reaction rates for the electron transfer process. SPLET was the most probable mechanism for both reactions with the aminyl and hydrazyl radicals, while HAT and SPLET were plausible mechanisms for reactions with the imidazolyl radical. Special emphasis was put on the investigation of the substituent effect on the preferred mechanism. The necessity of both thermodynamic and kinetic parameters for the comparison of the antiradical potency of compounds was discussed. The same methodology was applied for the theoretical investigation of the reactivity towards DPPH, a member of the hydrazyl radicals. An ecotoxicity analysis was performed to assess the impact the investigated radicals have on the ecosystem. Except for histidine, every other neutral form was either toxic or highly toxic to some of the analyzed marine organisms.  相似文献   

19.
Many photoactive metal complexes can act as electron donors or acceptors upon photoexcitation, but hydrogen atom transfer (HAT) reactivity is rare. We discovered that a typical representative of a widely used class of iridium hydride complexes acts as an H-atom donor to unactivated olefins upon irradiation at 470 nm in the presence of tertiary alkyl amines as sacrificial electron and proton sources. The catalytic hydrogenation of simple olefins served as a test ground to establish this new photo-reactivity of iridium hydrides. Substrates that are very difficult to activate by photoinduced electron transfer were readily hydrogenated, and structure–reactivity relationships established with 12 different olefins are in line with typical HAT reactivity, reflecting the relative stabilities of radical intermediates formed by HAT. Radical clock, H/D isotope labeling, and transient absorption experiments provide further mechanistic insight and corroborate the interpretation of the overall reactivity in terms of photo-triggered hydrogen atom transfer (photo-HAT). The catalytically active species is identified as an Ir(ii) hydride with an IrII–H bond dissociation free energy around 44 kcal mol−1, which is formed after reductive 3MLCT excited-state quenching of the corresponding Ir(iii) hydride, i.e. the actual HAT step occurs on the ground-state potential energy surface. The photo-HAT reactivity presented here represents a conceptually novel approach to photocatalysis with metal complexes, which is fundamentally different from the many prior studies relying on photoinduced electron transfer.

Upon irradiation with visible light, an iridium hydride complex undergoes hydrogen atom transfer (HAT) to unactivated olefins in presence of a sacrificial electron donor and a proton source.  相似文献   

20.
The dynamics and mechanisms of proton dissociation and transfer in hydrated phosphoric acid (H3PO4) clusters under excess proton conditions were studied based on the concept of presolvation using the H3PO4–H3O+nH2O complexes (n = 1–3) as the model systems and ab initio calculations and Born–Oppenheimer molecular dynamics (BOMD) simulations at the RIMP2/TZVP level as model calculations. The static results showed that the smallest, most stable intermediate complex for proton dissociation (n = 1) is formed in a low local‐dielectric constant environment (e.g., ε = 1), whereas proton transfer from the first to the second hydration shell is driven by fluctuations in the number of water molecules in a high local‐dielectric constant environment (e.g., ε = 78) through the Zundel complex in a linear H‐bond chain (n = 3). The two‐dimensional potential energy surfaces (2D‐PES) of the intermediate complex (n = 1) suggested three characteristic vibrational and 1H NMR frequencies associated with a proton moving on the oscillatory shuttling and structural diffusion paths, which can be used to monitor the dynamics of proton dissociation in the H‐bond clusters. The BOMD simulations over the temperature range of 298–430 K validated the proposed proton dissociation and transfer mechanisms by showing that good agreement between the theoretical and experimental data can be achieved with the proposed rate‐determining processes. The theoretical results suggest the roles played by the polar solvent and iterate that insights into the dynamics and mechanisms of proton transfer in the protonated H‐bond clusters can be obtained from intermediate complexes provided that an appropriate presolvation model is selected and that all of the important rate‐determining processes are included in the model calculations. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号