首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The excellent processing stability afforded by the commercial phosphate antioxidant, Alkanox P-24 is well known in the literature. However, it is known that Alkanox P-24 is hydrolytically unstable. Enhancement of its hydrolytic stability is therefore a key objective in this work and some binary and ternary blends were developed using other additives that are often used for polymer stabilisation, including the primary antioxidant tetrakis[methylene-3-(3′,5′-di-tert-butyl-4-hydroxyhyphenyl)propionate]methane (Anox 20), acid scavengers calcium stearate (DW) and the hydrotalcite like compound (DHT-4A). An improvement in the hydrolytic stability of Alkanox P-24 was found when it was blended with these additives. A comparison with different physical forms of blends (traditional powders versus recently introduced Non-Dust Blends) was undertaken. Better performance was observed with NDB relative to the free flowing mixed powders. Spectroscopic studies (FTIR, and mass spectrometry) were also undertaken to elucidate the hydrolysis mechanism of the phosphite antioxidant Alkanox P-24. Mechanistic schemes were devised and interpreted. Hydrolysis products of Alkanox P-24 are believed to be involved in the mechanism of stabilisation. In this programme of work, the role of the hydrolysis products was investigated by controlled thermomechanical degradation in an extruder and stabilisation activity evaluated by following the yellowness index and the melt flow rate. The influence of partially hydrolysed Alkanox P-24 on polymer processing was studied. It was found that some active hydrolysis products showed significant antioxidant activity and retarded polymer degradation during processing. Mechanisms for their formation and identity are elucidated.  相似文献   

2.
The hydrolysis reaction mechanism of phosphite antioxidants is investigated by liquid chromatography-mass spectrometry (LC/MS). The phosphites were chosen because they differed in chemical structure and phosphorus content. Dopant assisted-atmospheric pressure photoionization (DA-APPI) is chosen as the ion source for the ionization of the compounds. In our previous work, DA-APPI was shown to offer an attractive alternative to atmospheric pressure chemical ionization (APCI) since it provided background-ion free mass spectra and higher sensitivity [M. Papanastasiou, et al., Polymer Degradation and Stability 91 (11) (2006) 2675–2682]. In positive ion mode, the molecules are generally detected in their protonated form. In negative ion mode, the phosphites are unstable and only fragment ions are observed; these however, are characteristic of each phosphite and may be used for the identification of the analytes in complex mixtures.The analytes under investigation are exposed to accelerated humid ageing conditions and their hydrolytic pathway and stability is investigated. Different substituents around the phosphorus atom are shown to have a significant effect on the stability of the phosphites, with phenol substituents producing very hydrolytically stable structures. Alkanox P24 and PEP-36 follow a similar hydrolytic pathway via the scission of the first and then the second POphenol bonds, eventually leading to the formation of phenol, phosphorous acid and pentaerythritol as end products. HP-10 exhibits a rather different structure and the products detected suggest scission of either the POhydrocarbon or one of the POphenol bonds. A phenomenon similar to that of autocatalysis is observed for all phosphites and is attributed to the formation of dialkyl phosphites as intermediate products.  相似文献   

3.

Choosing an appropriate ion source is a crucial step in liquid chromatography mass spectrometry (LC/MS) method development. In this paper, we compare four ion sources for LC/MS analysis of 40 pesticides in tomato and garlic matrices. We compare electrospray ionisation (ESI) source, thermally focused/heated electrospray (HESI), atmospheric pressure photoionisation (APPI) source with and without dopant, and multimode source in ESI mode, atmospheric pressure chemical ionisation (APCI) mode, and combined mode using both ESI and APCI, i.e. altogether seven different ionisation modes. The lowest limits of detection (LoDs) were obtained by ESI and HESI. Widest linear ranges were observed with the conventional ESI source without heated nebuliser gas. In comparison to HESI, ESI source was significantly less affected by matrix effect. APPI ranked second (after ESI) by not being influenced by matrix effect; therefore, it would be a good alternative to ESI if low LoDs are not required.

Graphical abstract

  相似文献   

4.
The usefulness of atmospheric pressure photoionization (APPI) is difficult to evaluate for unknowns due to the fragmented literature. Specifically, the variation of dopants with a wide set of compounds or the use of APPI in the negative mode have rarely been explored. Thirty compounds were selected that were not suitable for ESI with a wide variety of functional groups and investigated with atmospheric pressure chemical ionization (APCI) and APPI in the positive and negative ion modes. The influence of the mobile phase (eluents containing acetonitrile or methanol) and – for APPI – four different dopants (acetone, chlorobenzene, toluene, and toluene/anisole) were explored. Stepwise variation of the organic mobile phase allowed to elucidate the ionization mechanism. Atmospheric pressure photoionization was especially useful for compounds, where the M●+ and not the [M + H]+ was formed. The dopants chlorobenzene and anisole promoted the formation of molecular ions M●+ for about half of the compounds, and its formation was also positively influenced by the use of mobile phases containing methanol. In the negative ion mode, APPI offered no advantage toward APCI. Best results were generally achieved with the dopant chlorobenzene, establishing that this dopant is suitable for a wide set of compounds. For one quarter of the compounds, significantly better results were achieved with mobile phases containing methanol for both APPI and APCI than those with acetonitrile, but only in the positive mode. With either of the methods – APPI or APCI – about 10% of the compounds were not detected. Strategies to get results quickly with difficult unknowns will be discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a “soft” ion source for preserving highly diagnostic molecular ion is desirable, as compared to the “hard” ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS.  相似文献   

6.
The effect of nine different eluent compositions on the ionization efficiency of five flavonoids was studied using ion spray (IS), atmospheric pressure chemical ionization (APCI), and the novel atmospheric pressure photoionization (APPI), in positive and negative ion modes. The eluent composition had a great effect on the ionization efficiency, and the optimal ionization conditions were achieved in positive ion IS and APCI using 0.4% formic acid (pH 2.3) as a buffer, and in negative ion IS and APCI using ammonium acetate buffer adjusted to pH 4.0. For APPI work, the eluent of choice appeared to be a mixture of organic solvent and 5 mM aqueous ammonium acetate. The limits of detection (LODs) were determined in scan mode for the analytes by liquid chromatography/mass spectrometry using IS, APCI and APPI interfaces. The results show that negative ion IS with an eluent system consisting of acidic ammonium acetate buffer provides the best conditions for detection of flavonoids in mass spectrometry mode, their LODs being between 0.8 and 13 microM for an injection volume of 20 microl.  相似文献   

7.
The use of mass spectrometry based on atmospheric pressure ionisation techniques (atmospheric pressure chemical ionisation, APCI, and electrospray ionisation, ESI) for speciation analysis is reviewed with emphasis on the literature published in and after 1999. This report accounts for the increasing interest that atmospheric pressure ionisation techniques, and in particular ESI, have found in the past years for qualitative and quantitative speciation analysis. In contrast to element-selective detectors, organic mass spectrometric techniques provide information on the intact metal species which can be used for the identification of unknown species (particularly with MS–MS detection) or the confirmation of the actual presence of species in a given sample. Due to the complexity of real samples, it is inevitable in all but the simplest cases to couple atmospheric pressure MS detection to a separation technique. Separation in the liquid phase (capillary electrophoresis or liquid chromatography in reversed phase, ion chromatographic or size-exclusion mode) is particularly suitable since the available techniques cover a very wide range of analyte polarities and molecular mass. Moreover, derivatisation can normally be avoided in liquid-phase separation. Particularly in complex environmental or biological samples, separation in one dimension is not sufficient for obtaining adequate resolution for all relevant species. In this case, multi-dimensional separation, based on orthogonal separation techniques, has proven successful. ESI-MS is also often used in parallel with inductively coupled plasma MS detection. This review is structured in two parts. In the first, the fundamentals of atmospheric pressure ionisation techniques are briefly reviewed. The second part of the review discusses recent applications including redox species, use of ESI-MS for structural elucidation of metal complexes, characterisation and quantification of small organometallic species with relevance to environment, health and food. Particular attention is given to the characterisation of biomolecules and metalloproteins (metallothioneins and phytochelatins) and to the investigation of the interaction of metals and biomolecules. Particularly in the latter field, ESI-MS is the ideal technique due to the softness of the ionisation process which allows to assume that the detected gas-phase ions are a true representation of the ions or ion–biomolecule complexes prevalent in solution. It is particularly this field, important to biochemistry, physiology and medical chemistry, where we can expect significant developments also in the future.  相似文献   

8.
The performance of the atmospheric pressure photoionization (APPI) technique was evaluated against five sets of standards and drug-like compounds and compared to atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI). The APPI technique was first used to analyze a set of 86 drug standards with diverse structures and polarities with a 100% detection rate. More detailed studies were then performed for another three sets of both drug standards and proprietary drug candidates. All 60 test compounds in these three sets were detected by APPI with an overall higher ionization efficiency than either APCI or ESI. Most of the non-polar compounds in these three sets were not ionized by APCI or ESI. Analysis of a final set of 201 Wyeth proprietary drug candidates by APPI, APCI and ESI provided an additional comparison of the ionization techniques. The detection rates in positive ion mode were 94% for APPI, 84% for APCI, and 84% for ESI. Combining positive and negative ion mode detection, APPI detected 98% of the compounds, while APCI and ESI detected 91%, respectively. This analysis shows that APPI is a valuable tool for day-to-day usage in a pharmaceutical company setting because it is able to successfully ionize more compounds, with greater structural diversity, than the other two ionization techniques. Consequently, APPI could be considered a more universal ionization method, and therefore has great potential in high-throughput drug discovery especially for open access liquid chromatography/mass spectrometry (LC/MS) applications.  相似文献   

9.
Unusual ionization behavior was observed with novel antineoplastic curcumin analogues during the positive ion mode of matrix‐assisted laser desorption ionization (MALDI) and dopant‐free atmospheric pressure photoionization (APPI). The tested compounds produced an unusual significant peak designated as [M ? H]+ ion along with the expected [M + H]+ species. In contrast, electrospray ionization, atmospheric pressure chemical ionization and the dopant‐mediated APPI (dopant‐APPI) showed only the expected [M + H]+ peak. The [M ? H]+ ion was detected with all evaluated curcumin analogues including phosphoramidates, secondary amines, amides and mixed amines/amides. Our experiments revealed that photon energy triggers the ionization of the curcumin analogues even in the absence of any ionization enhancer such as matrix, solvent or dopant. The possible mechanisms for the formation of both [M ? H]+ and [M + H]+ ions are discussed in this paper. In particular, three proposed mechanisms for the formation of [M ? H]+ were evaluated. The first mechanism involves the loss of H2 from the protonated [M + H]+ species. The other two mechanisms include hydrogen transfer from the analyte radical cation or hydride abstraction from the neutral analyte molecule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A comparison was made between the electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) tandem mass spectrometric (MS/MS) responses of eleven ultraviolet (UV) filters. Four of the target compounds were favourably ionized in negative ion mode, and the other seven compounds in positive ion mode. For nine of the compounds APPI generated a similar response to that of ESI, but the APPI signal‐to‐noise (S/N) ratios were 1.3–60 times higher. The two most polar of the UV filter compounds (PBSA and BP‐4) were more efficiently ionized by ESI, offering higher signal intensities and lower detection limits. APPI was, however, less susceptible to ion suppression than ESI when real samples were injected. In order to optimize the APPI conditions different dopant solvents were examined to enhance the efficiency of the photoionization process. Among the evaluated dopants, toluene was selected as the best compromise. At a toluene flow rate of 10% of the solvent flow rates the ionization response increased by a factor of 40–50 over the use of no dopant for the compounds in positive ion mode and by more than 300 for the compounds in negative ion mode. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) was coupled with atmospheric pressure photoionization (APPI) for the first time and used for the analysis of several corticosteroids.1 The analytes showed excellent response using APPI when compared with both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). APPI has the advantage of requiring less heat for desolvation, resulting in less thermal degradation of the analytes and higher signal-to-noise than APCI. In terms of ultimate sensitivity, APPI is more efficient than either ESI or APCI for the analysis of corticosteroids. With some compounds, the high-resolution capability of FTICRMS was necessary to obtain an accurate mass due to contributions of the M(+.) (13)C isotope in the [M+H](+) ion peak.  相似文献   

12.
A group of five neurotransmitters with different properties was analyzed using atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). The sensitivity of the techniques for the analytes was tested in six solvents and in positive and negative ion modes. APPI was found to be superior in sensitivity for all the compounds in both positive and negative ion modes. In positive ion mode, water/methanol/formic acid was found to be the best solvent, whereas in negative ion mode, water/methanol/ammonium hydroxide performed best. Detection limits using APPI were between 2.5-250 fmol, depending on the compound. The sensitivity was best for the neurosteroids dehydroepiandrosterone and beta-estradiol, and acetylcholine (LOD 2.5-10 fmol).  相似文献   

13.
Hayen H  Jachmann N  Vogel M  Karst U 《The Analyst》2003,128(11):1365-1372
Nitrobenzoxadiazole (NBD) derivatives are determined with limits of detection ranging down to 20 nmol l(-1) using liquid chromatography-mass spectrometry (LC-MS) with electron capture (EC) ionisation. An atmospheric pressure chemical ionisation (APCI) interface operated in the negative ion mode is used as ionisation source. Amine derivatives of 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBDCl) as well as the isocyanate derivatives of 4-nitro-7-piperazino-2,1,3-nitrobenzoxadiazole (NBDPZ) have been analysed using this technique. The parameters favouring electron capture mechanisms have been investigated thoroughly under consideration of the competing mechanism of deprotonation to allow a better understanding of the electron capture process and to improve selectivity of the analysis.  相似文献   

14.
The ionization mechanism in the novel atmospheric pressure photoionization mass spectrometry (APPI-MS) in negative ion mode was studied thoroughly by the analysis of seven compounds in 17 solvent systems. The compounds possessed either gas-phase acidity or positive electron affinity, whereas the solvent systems had different polarities and gas-phase acidities and some of them positive electron affinities. The analytes that possessed gas-phase acidity formed deprotonated ions in proton transfer; in addition, fragments and solvent adducts were observed. The compounds of positive electron affinity formed negative molecular ions by electron capture or charge exchange and substitution products of form [M - X + O](-) by substitution reactions. The efficiency of deprotonation was decreased if the solvent used possessed higher gas-phase acidity than the analyte. Solvents of positive electron affinity captured thermal electrons and deteriorated the ionization of all the analytes. Also, the proportion of substitution products was affected by the solvent. Finally, the performances of negative ion APPI and negative ion APCI were compared. The sensitivity for the studied compounds was better in APPI, but the formation of substitution products was lower in APCI.  相似文献   

15.
An atmospheric pressure photoionization (APPI) source and an atmospheric pressure chemical ionization (APCI) source were compared for the selective detection of microbial respiratory ubiquinone and menaquinone isoprenologues using tandem mass spectrometry. Ionization source- and compound mass-dependent parameters were optimized individually for both sources, using the available quinone standards. Detection levels for the two ion sources were determined with ubiquinone-6 (UQ6) and menaquinone-4 (MK4, vitamin K2) standards using flow injection analysis and selected reaction monitoring (SRM). With APPI the calculated lower limit of detection (LLOD) was 1.7 fmol microl(-1) for UQ6 and 2.2 fmol microl(-1) for MK4 at a signal-to-noise ratio of 3. These LLODs were at least three times lower than with APCI. The selectivity of detection afforded by SRM detection reduced complex mixture analysis to 3 min per sample by eliminating the need for chromatographic separations. The detection method was successfully applied to quinone quantification in a variety of environmental samples and cell cultures. Adequate amounts of respiratory quinones can be extracted and quantified from samples containing as low as 2 x 10(7) cells.  相似文献   

16.
The analysis of crude oil samples remains a tough challenge due to the complexity of the matrix and the broad range of physical and chemical properties of the various individual compounds present. In this work, atmospheric pressure laser ionization (APLI) is utilized as a complementary tool to other ionization techniques for crude oil analysis. Mass spectra obtained with electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) are compared. APLI is primarily sensitive towards non‐polar aromatic hydrocarbons, which are generally present in high amounts especially in heavy crude oil samples. The ionization mechanisms of APLI vs. APPI are further investigated. The results indicate the advantages of APLI over established methods like ESI and APPI. The application of APLI in combination with Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) is thus demonstrated to be a powerful tool for the analysis of aromatic species in complex crude oil fractions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper we describe results based on the combination of atmospheric pressure photoionization (APPI) with atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI). The main purpose of combining more than one ionizer is to extend the range of compounds that can be simultaneously analyzed. Three modes of operation are presented; use of either ionizer, simultaneous use of two ionizers, and rapid switching between ionizers during a single chromatographic run. The dual ionizer configurations only minimally affect the performance of either ionizer relative to the standard single-ionizer sources. However, it is observed that the operation of both ionizers together does not typically give the sum signal from either source operating alone. For APCI/APPI the signal can range from less than that of either source alone to the sum of the two individual sources. For ESI/APPI, we observed large suppressions of the ESI multiply-charged signal of proteins when the APPI source was on. These behaviors are presumed to be due to the interaction of the initially formed ions by both sources and attests to the importance of ion-molecule reactions that occur during and after the primary ionization events. We give examples of compounds that are preferentially ionized by either APPI, APCI or ESI and present thermochemical arguments based on molecular structure and functionality to explain this behavior. The dual source is also shown to be able to operate in negative ion mode opening up the potential to conduct wide ranging chemical analyses.  相似文献   

18.
Hydroperoxides formed by autoxidation of common fragrance terpenes are strong allergens and known to cause allergic contact dermatitis (ACD), a common skin disease caused by low molecular weight chemicals. Until now, no suitable methods for chemical analyses of monoterpene hydroperoxides have been available. Their thermolability prohibits the use of gas chromatography and their low UV-absorption properties do not promote sensitive analytical methods by liquid chromatography based on UV detection. In our study, we have investigated different liquid chromatography/mass spectrometry (LC/MS) ionization techniques, electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI), for detection of hydroperoxides from linalool and limonene.Flow injection analysis was used to evaluate the three different techniques to ionize the monoterpene hydroperoxides, linalool hydroperoxide and limonene hydroperoxide, by estimating the signal efficacy under experimental conditions for positive and negative ionization modes. The intensities for the species [M+H]+ and [M+H-H2O]+ in positive ionization mode and [M-H]- and [M-H-H2O]- in negative ionization mode were monitored. It was demonstrated that the mobile phase composition and instrumental parameters have major influences on the ionization efficiency of these compounds. ESI and APCI were both found to be appropriate as ionization techniques for detection of the two hydroperoxides. However, APPI was less suitable as ionization technique for the investigated hydroperoxides.  相似文献   

19.
We determine the elemental compositions of aromatic nitrogen model compounds as well as a petroleum sample by atmospheric pressure photoionization (APPI) and electrospray Ionization (ESI) with a 9.4 Tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. From the double-bond equivalents calculated for the nitrogen-containing ions from a petroleum sample, we can infer the aromatic core structure (pyridinic versus pyrrolic nitrogen heterocycle) based on the presence of M(+.) (odd-electron) versus [M+H](+) (even-electron) ions. Specifically, nitrogen speciation can be determined from either a single positive-ion APPI spectrum or two ESI (positive- and negative-ion) spectra. APPI operates at comparatively higher temperature than ESI and also produces radical cations that may fragment before detection. However, APPI fragmentation of aromatics can be eliminated by judicious choice of instrumental parameters.  相似文献   

20.
The chances to improve the detection of pesticides using differential mobility spectrometry (DMS) with an atmospheric pressure photoionization (APPI) ion source by means of dopants was investigated. The effect of employing benzene, anisole and chlorobenzene as dopants is described regarding sensitivity, limits of detection and peak displacements in the spectra. For typical pesticides an improvement of detection limits up to two orders of magnitude could be determined, while for the peak shift of individual substances no uniform behaviour was observed. Possible mechanisms of action in respect to atmospheric pressure photoionization (APPI) processes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号