首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion-molecule reactions of the proton bound dimer of [Sar+H+GlyGly]+ (where Sar = sarcosine and GlyGly = glycylglycine) proceed via two main reaction channels, i.e. association and ligand switching. The association reaction, which involves formation of an adduct between the protonated dimer and neutral base, occurs more readily for the oxygen containing bases and those with a lower gas phase basicity. Molecular recognition was demonstrated for the ligand switching reactions in which nitrogen containing bases preferred to switch out sarcosine while the oxygen containing bases preferred to switch out glycylglycine. Molecular dynamics followed by semiempirical PM3 calculations for the ligand switching reactions of [Sar+H+GlyGly]+ with methylamine directly correlated with the experimental findings by predicting that the most stable product ion arises from switching out sarcosine. These calculations reveal that the most stable adduct structure and the most stable ligand switched structure arise from proton transfer to methylamine to yield ions of the type [(Sar)(GlyGly)(LigH+)] and [(GlyGly)(LigH+)].  相似文献   

2.
The unimolecular dissociation pathways and kinetics of a series of protonated trimer ions consisting of two organic bases and trifluoroacetic acid were investigated using blackbody infrared radiative dissociation. Five bases with gas-phase basicities (GB) ranging from 238.4 to 246.2 kcal/mol were used. Both the dissociation pathways and the threshold dissociation energies depend on the GB of the base. Trimers consisting of the two most basic molecules dissociate to form protonated base monomers with an E(0) ~ 1.4 eV. Trimers consisting of the two least basic molecules dissociate to form protonated base dimers with an E(0) ~ 1.1-1.2 eV. These results indicate that the structures of the trimers change as a function of the GB of the basic molecule. The predominant structure of the protonated trimers consisting of the two most basic molecules is consistent with a salt bridge in which both of the basic molecules are protonated, and the trifluoroacetic acid molecule is deprotonated, whereas the predominant structure of the protonated trimers consisting of the two least basic molecules are consistent with charge-solvated complexes in which the proton is shared. The structure of the trimer consisting of the base of intermediate basicity is less clear; it dissociates to form primarily protonated base dimer, but has an E(0) ~ 1.2 eV. These results are consistent with the structure of this trimer as a salt bridge, but the resulting dissociation A(-). BH(+) product does not appear to be stable as an ion pair in the dissociative transition state.  相似文献   

3.
The post-source decay of bradykinin, Lys1-bradykinin, des-Arg1-bradykinin, des-Arg9-bradykinin and [D-Phe7]-bradykinin [M + H]+ ions was examined in order to assertain the influence of secondary structure on peptide ion dissociation. Fragment ions corresponding to the elimination of H2O and HN=C=NH are observed in the product ion mass spectra of Lys1-bradykinin and des-Arg1-bradykinin but not in the spectra of bradykinin or des-Arg9-bradykinin. Cleavage reactions at the Phe-Ser and/or Ser-Pro bonds are observed for all peptide [M + H]+ ions with the exception of des-Arg9-bradykinin. The product ions arising from the processes described above are rationalized in terms of the intramolecular solvation of the protonated guanidino groups of the arginines. The strongest intramolecular interaction appears to be a proton bridge between the guanidino groups of the N- and C-terminal arginines in bradykinin. In addition, increased abundances of fragment ions in the vicinity of Ser-Pro may be attributed to intramolecular solvation of the protonated C-terminal guanidino group by the Ser-Pro portion of the molecule. This self-solvation of the ionizing proton leads to a gas-phase peptide conformation that is supported by solution-phase NMR studies at elevated temperatures and in non-polar solvents but which is different from the conformation in polar solvents.  相似文献   

4.
Ab initio calculations at the MP2/aug'-cc-pVTZ level have been carried out to investigate the structures and binding energies of cationic complexes involving protonated sp, sp2, and sp3 phosphorus bases as proton donor ions and the sp-hybridized phosphorus bases H-C[triple bond]P and H3C-C[triple bond]P as proton acceptors. These proton-bound complexes exhibit a variety of structural motifs, but all are stabilized by interactions that occur through the pi cloud of the acceptor base. The binding energies of these complexes range from 6 to 15 kcal/mol. Corresponding complexes with H3C-C[triple bond]P as the proton acceptor are more stable than those with H-C[triple bond]P as the acceptor, a reflection of the greater basicity of H3C-C[triple bond]P. In most complexes with sp2- or sp3-hybridized P-H donor ions, the P-H bond lengthens and the P-H stretching frequency is red-shifted relative to the corresponding monomers. Complex formation also leads to a lengthening of the C[triple bond]P bond and a red shift of the C[triple bond]P stretching vibration. The two-bond coupling constants 2pihJ(P-P) and 2pihJ(P-C) are significantly smaller than 2hJ(P-P) and 2hJ(P-C) for complexes in which hydrogen bonding occurs through lone pairs of electrons on P or C. This reflects the absence of significant s electron density in the hydrogen-bonding regions of these pi complexes.  相似文献   

5.
Proton-bound heterodimers of substituted benzamides 1–15 and N,N-dimethyl benzamides 16–30, respectively, with a series of reference bases were generated under chemical ionization conditions. Their dissociation into the protonated amide AH+ and protonated reference base BH+ was studied by metastable ion techniques and by collision-induced dissociation (CID) to examine substituent effects on the proton affinity (PA) of the benzarnides and to elucidate some aspects of the dissociation dynamics of proton-bound clusters. The PAs of the substituted benzarnides were determined by bracketing the amide by a pair of reference bases to give rise to more and less abundant signals of the protonated base in the mass-analyzed ion kinetic energy (MIKE) spectra of the proton-bound heterodimers. The substituent effects observed agree with O-protonation in both the primary and the tertiary benzamides. However, the susceptibility of the benzamide to polar substituent effects is remarkably small, which indicates a “resonance saturation”), of the amide group. The relative abundances of AH+ and BH+ in the MIKE and collisional activation (CA) mass spectra depend strongly on the pressure of the collision gas during CID, and in certain cases a reversal of the relative abundances with increasing pressure that favors the formation of BH+ from a less basic reference base is observed. Although this effect underlines the limited possibilities of the “kinetic method” for PA determination by CID of proton-bound heterodimers, it uncovers important kinetic effects during the dissociation of proton-bound heterodimers and of proton transfer reactions in the gas phase.. In the case of the protonated amide clusters, the observed intensity effects in the CA mass spectra are explained by a double-well potential energy surface caused by solvation of the protonated base by the polar amide in the protonated heterodimer.  相似文献   

6.
系统地研究四异丙氧基酞菁的子化和脱质子化对吸收和发射光谱的影响,研究表明,三氟乙酸可对酞菁分子连续质子化,分别生成(H2Pc(O^iPr)4.H^+)^和(H2Pc(O^iPr)4.2H^+)^2+,而硫酸可使酞菁形成(H2Pc(O^iPr)4.4H^+^4+此外,NaOH/EtOH可使酞菁分子脱质子化生成(Pc(O^iPr)4)^2-反应一步完成,表明分子中的两个吡咯-NH-同步酸解,质子化可使  相似文献   

7.
1,8-Bis(tetramethylguanidino)naphthalene (TMGN, 1) is a new, readily accessible, and stable "proton sponge" with an experimental pK(BH(+)) value of 25.1 in MeCN, which is nearly seven orders of magnitude higher in basicity than the classical proton sponge 1,8-bis(dimethylamino)-naphthalene (DMAN). Because of the sterically less crowded character of the proton-accepting sp(2)-nitrogen atoms, TMGN also has a higher kinetic basicity than DMAN, which is shown by time-resolved proton self-exchange reactions. TMGN is more resistant to hydrolysis and is a weaker nucleophile towards the alkylating agent EtI in comparison to the commercially available guanidine 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD). Crystal structures of the free base, of the mono- and bisprotonated base were determined. The dynamic behavior of all three species in solution was investigated by variable-temperature (1)H NMR experiments. DeltaG (++) values obtained by spectra simulation reveal a concerted mechanism of rotation about the C-N bonds of the protonated forms of TMGN.  相似文献   

8.
The hitherto unknown gas-phase basicity and proton affinity of 1,3,5-cycloheptatriene (CHT) have been determined by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Several independent techniques were used in order to exclude ambiguities due to proton-induced isomerisation of the conjugate cyclic C(7)H(9)(+) ions, [CHT + H](+). The gas-phase basicity obtained by the thermokinetic method, GB(CHT) = 799 +/- 4 kJ mol(-1), was found to be identical, within the limits of experimental error, with the values measured by the equilibrium method starting with protonated reference bases, and with the values resulting from the measurements of the individual forward and reverse rate constants, when corrections were made for the isomerised fraction of the C(7)H(9)(+) population. The experimentally determined gas-phase basicity leads to the proton affinity of cycloheptatriene, PA(CHT) = 833 +/- 4 kJ mol(-1), and the heat of formation of the cyclo-C(7)H(9)(+) ion, deltaH(f)(0)([CHT + H](+)) = 884 +/- 4 kJ mol(-1). Ab initio calculations are in agreement with these experimental values if the 1,2-dihydrotropylium tautomer, [CHT + H((1))](+), generated by protonation of CHT at C-1, is assumed to be the conjugate acid, resulting in PA(CHT) = 825 +/- 2 kJ mol(-1) and deltaH(f)(0)(300)([CHT + H((1))](+)) = 892 +/- 2 kJ mol(-1). However, the calculations indicate that protonation of cycloheptatriene at C-2 gives rise to transannular C-C bond formation, generating protonated norcaradiene [NCD + H](+), a valence tautomer being 19 kJ mol(-1) more stable than [CHT + H((1))](+). The 1,4-dihydrotropylium ion, [CHT + H((3))](+), generated by protonation of CHT at C-3, is 17 kJ mol(-1) less stable than [CHT + H((1))](+). The bicyclic isomer [NCD + H](+) is separated by relatively high barriers, 70 and 66 kJ mol(-1) from the monocyclic isomers, [CHT + H((1))](+) and [CHT + H((3))](+), respectively. Therefore, the initially formed 1,2-dihydrotropylium ion [CHT + H((1))](+) does not rearrange to the bicyclic isomer [NCD + H](+) under mild protonation conditions.  相似文献   

9.
The intrinsic acidity and basicity of a series of beta-chalcogenovinyl(thio)aldehydes HC([double bond]X)[bond]CH[double bond]CH[bond]CYH (X=O, S; Y=Se, Te) were investigated by B3LYP/6-311+G(3df,2p) density functional and G2(MP2) calculations on geometries optimized at the B3LYP/6-31G(d) level for neutral molecules and at the B3LYP/6-31+G(d) level for anions. The results showed that selenovinylaldehyde and selenovinylthioaldehyde should behave as Se bases in the gas phase, because the most stable neutral conformer is stabilized by an X[bond]H...Se (X=O, S) intramolecular hydrogen bond (IHB). In contrast the Te-containing analogues behave as oxygen or sulfur bases, because the most stable conformer is stabilized by typical X...Y[bond]H chalcogen-chalcogen interactions. These compounds have a lower basicity than expected because either chalcogen-chalcogen interactions or IHBs become weaker upon protonation. Similarly, they are also weaker acids than expected because deprotonation results in a significantly destabilized anion. Loss of the proton from the X[bond]H or Y[bond]H groups is a much more favorable than from the C[bond]H groups. Therefore, for Se compounds the deprotonation process results in loss of the X[bond]H...Se (X=O, S) IHBs present in the most stable neutral conformer, while for Te-containing compounds the stabilizing X...Y[bond]H chalcogen-chalcogen interaction present in the most stable neutral conformer becomes repulsive in the corresponding anion.  相似文献   

10.
The dependence of the mobilities of gas-phase ions on electric fields from 0 to 90 Td at ambient pressure was determined for protonated monomers [(MH+(H2O)n] and proton bound dimers [M2H+(H2O)n] for a homologous series of normal ketones, from acetone to decanone (M=C3H6O to C10H20O). This dependence was measured as the normalized function of mobility alpha (E/N) using a planar field asymmetric waveform ion mobility spectrometer (PFAIMS) and the ions were mass-identified using a PFAIMS drift tube coupled to a tandem mass spectrometer. Methods are described to obtain alpha (E/N) from the measurements of compensation voltage versus amplitude of an asymmetric waveform of any shape. Slopes of alpha for MH+ versus E/N were monotonic from 0 to 90 Td for acetone, butanone, and pentanone. Plots for ketones from hexanone to octanone exhibited plateaus at high fields. Nonanone and decanone showed plots with an inversion of slope above 70 Td. Proton bound dimers for ketones with carbon numbers greater than five exhibited slopes for alpha versus E/N, which decreased continuously with increasing E/N. These findings are the first alpha values for ions from a homologous series under atmosphere pressure and are preliminary to explanations of alpha (E/N) with ion structure.  相似文献   

11.
Schiff碱型和仲胺型双冠醚的合成和配位性能   总被引:4,自引:0,他引:4  
由水杨醛与α,ω-二溴代烷或二(对-甲苯磺酸)三甘醇酯反应,制成相应的二醛化合物。再与4′-氨基苯并-15-冠-5反应生成5种Schiff碱型双冠醚,经LiAlH_4还原可生成5种仲胺型双冠醚。电导率测量结果表明可与KCl(Rb)盐生成2:1(冠醚单元:金属离子)的夹心型配合物。而与钠离子形成1:1配合物。用双冠醚制成PVC膜钾离子选择电极,并测量了电极的线性范围和选择系数。  相似文献   

12.
Electronic structure calculations (CBS-QB3 and G3MP2) have been used to predict a suitable method to experimentally observe the anomalous structure which is predicted to exist in a proton-bound dimer with a high dipole moment monomer. The enthalpy associated with forming the proton-bound dimer from its protonated and neutral monomers is shown to be linearly related to the difference in proton affinities which has been observed experimentally. However, unlike previous experimental studies, the linear correlation is not predicted to depend strongly, if at all, on whether the basic sites are C=O, C=N, or O(H) n-donor bases. Thermochemical measurements, then, are probably not the best method to distinguish between the structures of heterogeneous proton-bound dimers. It has been shown that a suitable method to experimentally observe the anomalous structure of proton-bound dimers containing a high dipole moment monomer (or very polar monomer) is by spectroscopic measurement. The O-H+-O asymmetric stretch is probably not the best infrared band to try to correlate with structure. The best band to observe is one which is in a region of the spectrum not masked by other absorptions and is also sensitive to the proximity of the binding proton. For example, it is shown that the methanol-free O-H stretch is very sensitive to the O-H+ bond distance for a series of heterogeneous proton-bound dimers containing methanol. It is predicted that the free O-H stretch of the methanol/acetonitrile proton-bound dimer is more closely related to the O-H stretch in protonated methanol than the O-H stretch in neutral methanol. Observations of these bands should confirm that the proton is closer to methanol in the methanol/acetonitrile proton-bound dimer despite acetonitrile having a higher proton affinity.  相似文献   

13.
The kinetics of association of ureido-pyrimidinone (U) dimers, present either in the 4[1H]-keto form or in the pyrimidin-4-ol form, with 2,7-diamido-1,8-naphthyridine (N) into a complementary heterodimer have been investigated. The formation of heterodimers with 2,7-diamido-1,8-naphthyridine from pyrimidin-4-ol dimers is much faster than from 4[1H]-pyrimidinone dimers. Using a combination of simple measurements and simulations, evidence for a bimolecular tautomerization step is presented. Finally, the acquired kinetic knowledge of the different pathways leading from ureido-pyrimidinone homodimers to ureido-pyrimidinone:diamido-naphthyridine (U:N) heterodimers allows the prediction and observation of kinetically determined ureido-pyrimidinone heterodimers which slowly convert back to the corresponding homodimers.  相似文献   

14.
The ability of strongly sterically hindered pyridines to form hydrogen bonded complexes was inspected using low-temperature 1H and 15N NMR spectroscopy in a liquefied Freon mixture. The proton acceptors were 2,6-di(tert-butyl)-4-methyl- and 2,6-di(tert-butyl)-4-diethylaminopyridine; the proton donors were hydrogen tetrafluoroborate, hydrogen chloride, and hydrogen fluoride. The presence of the tert-butyl groups in the ortho positions dramatically perturbed the geometry of the forming hydrogen bonds. As revealed by experiment, the studied crowded pyridines could form hydrogen bonded complexes with proton donors exclusively through their protonation. Even the strongest small proton acceptor, anion F-, could not be received by the protonated base. Instead, the simplest hydrogen bonded complex involved the [FHF]- anion. This complex was characterized by the shortest possible N...F distance of about 2.8 A. Because the ortho tert-butyl groups did not prevent the hydrogen bond interaction between the protonated center and the anion completely, an increase of the pyridine basicity caused a further shortening of the N-H distance and a weakening of the hydrogen bond to the counterion.  相似文献   

15.
Five seven- or eight-coordinate manganese complexes of hydrazone ligands have been prepared. Three seven-coordinate neutral Mn(II) complexes: [Mn(dapA2)]n (1), [Mn(dapB2)(H2O)2] (2), [Mn(dapS2)(H2O)2] (3) have been synthesized from the bis-Schiff bases of 2,6-diacetylpyridine: dap(AH)2, dap(BH)2 and dap(SH)2 (AH = anthraniloyl hydrazide, BH = benzoyl hydrazide, SH = salicyloyl hydrazide), respectively. Two eight-coordinate Mn(II) complexes: [Mn(dapS)2] (4) and [Mn(dapB)2].3H2O (5) have been synthesized from the mono-Schiff bases dapBH and dapSH, respectively. The complexes have been characterized by elemental analyses and by IR, UV-Vis., FAB mass, EI mass and EPR spectroscopy. The molecular structures of 1, 3.DMF and 4.DMF have been determined by single-crystal X-ray diffraction. The mono-Schiff bases are monoanionic and the bis-Schiff bases are dianionic. The octa-coordinated mono-Schiff base complex 4 adopts a dodecahedral geometry, while the hepta-coordinated bis-Schiff base complex 1 forms a one-dimensional linear polymeric chain. A weak antiferromagnetic exchange interaction (J=-0.15 cm(-1)) between the Mn(II) ions in is attributed to weak Mn...Mn interaction through the PhNH(2) moiety of the ligand, as indicated by extended-Hückel molecular orbital calculations. A good simulation of the EPR spectrum of a frozen solution (DMSO at 4 K) of compound 1 was obtained with g=2.0, D=0.1 cm(-1), E=0.01 cm(-1). The EPR spectrum of a powdered sample of compound 1 shows a large broadening of the signal, due in part, to the important zero-field splitting of the hepta-coordinated Mn(II) ion.  相似文献   

16.
Para-bisguanidinyl benzene 1 and its N-permethylated derivative 2 are both sufficiently strong bases to afford not only the monocations [1+H]+ and [2+H]+, but also the doubly protonated ions, [1+2H]2+ and [2+2H]2+, in the gas phase. The title ions generated via electrospray ionization are probed by collision-induced dissociation experiments which inter alia reveal that the dicationic species [1+2H]2+ and [2+2H]2+ can even undergo fragmentation reactions with maintenance of the 2-fold charge. Complementary results from density functional theory predict PAs above 1000 kJ mol(-1) for the neutral compounds, i.e., PA(1) = 1025 kJ mol(-1) and PA(2) = 1067 kJ mol(-1). Due to the stabilization of the positive charge in the guanidinium ions and the para-phenylene spacer separating the basic sites, even the monocations bear sizable proton affinities, i.e., PA([1+H]+) = 740 kJ mol(-1) and PA([2+H]+) = 816 kJ mol(-1).  相似文献   

17.
The behavior of [Fe(2) (CO)(4) (κ(2) -PNP(R) )(μ-pdt)] (PNP(R) =(Ph(2) PCH(2) )(2) NR, R=Me (1), Ph (2); pdt=S(CH(2) )(3) S) in the presence of acids is investigated experimentally and theoretically (using density functional theory) in order to determine the mechanisms of the proton reduction steps supported by these complexes, and to assess the role of the PNP(R) appended base in these processes for different redox states of the metal centers. The nature of the R substituent of the nitrogen base does not substantially affect the course of the protonation of the neutral complex by CF(3) SO(3) H or CH(3) SO(3) H; the cation with a bridging hydride ligand, 1?μH(+) (R=Me) or 2?μH(+) (R=Ph) is obtained rapidly. Only 1?μH(+) can be protonated at the nitrogen atom of the PNP chelate by HBF(4) ?Et(2) O or CF(3) SO(3) H, which results in a positive shift of the proton reduction by approximately 0.15?V. The theoretical study demonstrates that in this process, dihydrogen can be released from a η(2) -H(2) species in the Fe(I) Fe(II) state. When R=Ph, the bridging hydride cation 2?μH(+) cannot be protonated at the amine function by HBF(4) ?Et(2) O or CF(3) SO(3) H, and protonation at the N atom of the one-electron reduced analogue is also less favored than that of a S atom of the partially de-coordinated dithiolate bridge. In this situation, proton reduction occurs at the potential of the bridging hydride cation, 2?μH(+) . The rate constants of the overall proton reduction processes are small for both complexes 1 and 2 (k(obs) ≈4-7?s(-1) ) because of the slow intramolecular proton migration and H(2) release steps identified by the theoretical study.  相似文献   

18.
Aerobic oxidation of the Mn(II) complex [Mn(Papy3)(H2O)](ClO4) (1, PaPy3- is the anion of the designed ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) in acetonitrile affords the (mu-oxo)dimanganese(III) complex [(Mn(PaPy3))2(mu-O)](ClO4)2 (3) in high yield. The unsupported single oxo bridge between the two high-spin Mn(III) centers in 3 is readily cleaved upon addition of proton sources such as phenol, acetic acid, and benzoic acid, and complexes of the type [Mn(PaPy3)(L)](ClO4) (5, L = PhO-; 6, L = AcO-; 7, L = BzO-) are formed. The basicity of the bridge is evident by the fact that simple addition of methanol to a solution of 3 in acetonitrile affords the methoxide complex [Mn(PaPy3)(OMe)](ClO4) (4). The structures of 3-5 and 7 have been determined. Passage of NO through a solution of 3 in acetonitrile produces the [Mn-NO]6 nitrosyl [Mn(PaPy3)(NO)](ClO4) (2) via reductive nitrosylation. Complexes 4-7 also afford the [Mn-NO]6 nitrosyl 2 upon reaction with NO. In the latter case, the anionic O-based ligands (such as MeO- and PhO-) act as built-in bases and promote reductive nitrosylation of the Mn(III) complexes.  相似文献   

19.
冯万勇 《物理化学学报》1996,12(10):892-899
质子键合的分子簇的离子-分子反应中的热化学和动力学关系的考察结果表明:对于非烷基锁闭的分子簇,如(C2H5OH)nH+(5=1-3)和(CH3OH)3H+;与中性碱B的质子转移反应,属快速反应,其反应效率r是由总反应的自由能变化△γGm控制,而与反应过渡态的本质无关。那些反应可能存在两个中间体,因电子转移导致质子从分子簇内部转移到中性碱,进而导致二个或三个溶剂分子的直接蒸发;烷基锁闭的质子键合的二聚体,如(CH3CN)2H+,(CH3OCH3)2H+,(CH3COCH3)2H+和(C3COOCH3)2H+,与中性碱的质子转移反应,其效率远小于1;与总反应的△γGm无关  相似文献   

20.
The protonation behavior of the iron hydrogenase active-site mimic [Fe2(mu-adt)(CO)4(PMe3)2] (1; adt=N-benzyl-azadithiolate) has been investigated by spectroscopic, electrochemical, and computational methods. The combination of an adt bridge and electron-donating phosphine ligands allows protonation of either the adt nitrogen to give [Fe2(mu-Hadt)(CO)4(PMe3)2]+ ([1 H]+), the Fe-Fe bond to give [Fe2(mu-adt)(mu-H)(CO)4(PMe3)2]+ ([1 Hy]+), or both sites simultaneously to give [Fe2(mu-Hadt)(mu-H)(CO)4(PMe3)2]2+ ([1 HHy]2 +). Complex 1 and its protonation products have been characterized in acetonitrile solution by IR, (1)H, and (31)P NMR spectroscopy. The solution structures of all protonation states feature a basal/basal orientation of the phosphine ligands, which contrasts with the basal/apical structure of 1 in the solid state. Density functional calculations have been performed on all protonation states and a comparison between calculated and experimental spectra confirms the structural assignments. The ligand protonated complex [1 H]+ (pKa=12) is the initial, metastable protonation product while the hydride [1 Hy]+ (pKa=15) is the thermodynamically stable singly protonated form. Tautomerization of cation [1 H]+ to [1 Hy]+ does not occur spontaneously. However, it can be catalyzed by HCl (k=2.2 m(-1) s(-1)), which results in the selective formation of cation [1 Hy]+. The protonations of the two basic sites have strong mutual effects on their basicities such that the hydride (pK(a)=8) and the ammonium proton (pK(a)=5) of the doubly protonated cationic complex [1 HHy]2+ are considerably more acidic than in the singly protonated analogues. The formation of dication [1 HHy]2+ from cation [1 H]+ is exceptionally slow with perchloric or trifluoromethanesulfonic acid (k=0.15 m(-1) s(-1)), while the dication is formed substantially faster (k>10(2) m(-1) s(-1)) with hydrobromic acid. Electrochemically, 1 undergoes irreversible reduction at -2.2 V versus ferrocene, and this potential shifts to -1.6, -1.1, and -1.0 V for the cationic complexes [1 H]+, [1 Hy]+, and [1 HHy]2+, respectively, upon protonation. The doubly protonated form [1 HHy]2+ is reduced at less negative potential than all previously reported hydrogenase models, although catalytic proton reduction at this potential is characterized by slow turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号