首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A novel Mo(V) diphosphate Sr(MoO)2P2O7 has been synthesized. It crystallizes in the space group P21/n with a=7.925(1) Å, b=7.739(1) Å, c=9.485(1) Å and β=91.05(1)°. Its original framework consists of MoP2O11 units built up of one P2O7 group sharing two apices with one MoO6 octahedron. The MoP2O11 units share corners, forming [MoP2O10] chains running along [101]. The assemblage of these chains forms the [Mo2P4O16] intersecting tunnel framework. The Sr2+ cations are located at the tunnel intersection, showing a distorted cubic coordination. This structure is compared to those of Ba(MoO)2P2O7 and LiMoOP2O7, which are also built up of MoP2O11 units forming [MoP2O10] chains, but with different configurations.  相似文献   

2.
A mixed-valent molybdenotungstophosphate, Nax(Mo, W)2O3(PO4)2 (x 0.75) has been isolated for the first time. It crystallizes in the space group P 21/m with a = 7.200(1) Å, b = 6.369(1) Å, c = 9.123(1) Å, and β = 106.29(1)°. Its structure consists of M2PO13 units built up of two M O6 octahedra (M = Mo, W) and one PO4 tetrahedron sharing their apices as already observed in several molybdenum phosphates. These units share their apices with PO4 tetrahedra forming [M2P2O15] chains running along . The host lattice [(Mo, W)2P2O11] can be described by the assemblage of such chains or by the assemblage of [MPO8] chains running along , in which one PO4 tetrahedron alternates with one MO6 octahedron. The tridimensional framework [Mo, WP2O11] delimits tunnels running along , occupied by sodium with two kinds of coordination, 6 and 5. The distribution of the different species, in the octahedral sites according to the formulation Na0.75(MoVI0.42WVI0.58)M1 (MoV0.75WVI0.25)2O3(PO4)2, is discussed.  相似文献   

3.
Crystals of Ln5Mo2O12 (Ln = Y, Gd) were grown by electrochemical reduction of alkali-molybdate/rare-earth oxide melts at 1075–1100°C. A single crystal of Y5Mo2O12, used for structure determination, was found to be monoclinic with a = 12.2376(7) Å, b = 5.7177(8) Å, c = 7.4835(5) Å, β = 108.034(5)°, and Z = 2. Although the structure was refined in space group C2/m, the true space group appears to be P21/m. In Y5Mo2O12, rutile-like sheets of edge-shared MoO6 chains linked by YO6 octahedra are interconnected with YO7 monocapped trigonal prisms. The Mo atoms in the chains have alternating distances of 2.496 and 3.221 Å and in that respect are similar to MoO2. However, in contrast to metallic MoO2 both the Y and Gd compounds are n-type semiconductors with room temperature resistivities of the order of 103 ohm-cm. Magnetic susceptibility measurements confirm the presence of one unpaired electron per Mo2 unit. The semiconducting behavior can be explained in terms of an unfavorable bridging oxygen coordination which prevents electron delocalization through metal-oxygen pi bonding as in MoO2.  相似文献   

4.
The crystal structure of K2Cu3(As2O6)2 was determined from single-crystal X-ray data by a direct method strategy and Fourier summations [a = 10.359(4) Å, B = 5.388(2)Å, C = 11.234(4) Å, β = 110.48(2)°; space group C2/m; Z = 2; Rw = 0.025 for 1199 reflections up to sin /λ = 0.81 Å−1]. In detail, the structure consists of As(V)O4 tetrahedra and As(III)O3 pyramids linked by a common O corner atom to [As(V)As(III)O6]4− groups with symmetry m. The bridging bonds As(V)---O [1.749(3) Å] and As(III)---O [1.838(2) Å] are definitely longer than the other As(V)---O bonds [mean 1.669 Å] and As(III)---O bonds [1.764(2) Å, 2×]. The angle As(V)---O---As(III) is 123.0(1)°. The Cu atoms are [4 + 2]- and [4 + 1]-, and the K atom is [9]-coordinated to oxygen atoms. The As2O6 groups and the Cu coordination polyhedra are linked to sheets parallel to (001). These sheets are connected by the K atoms. Single crystals of K2Cu3(As2O6)2 suitable for X-ray work were synthesized under hydrothermal conditions.  相似文献   

5.
A new mixed Mo/Ni/Ti heteropoly compound [C5H5NH]5 [(NiOH)2Mo10O36(PO4)Ti2] has been hydrothermally synthesized and structurally determined by the single-crystal X-ray diffraction. Black prismatic crystals crystallize in the monoclinic system, space group P2(1)/n, a=11.2075(2), b=37.8328(5) c=13.0888(1) Å, β=101.4580(10)°, M=2276.13, V=5439.19(13) Å3, Z=4. Data were collected on a Siemens SMART CCD diffractometer at 293(2) K in the range of 1.68<θ<25.09° using the ω-scan technique (λ=0.71073 Å R(F)=0.0872 for 9621 reflections). The title compound contains a trimetal heteropolyanion polymer and “trans-titanium”-bridging pseudo-Keggin fragments linked to a chain.  相似文献   

6.
Three rare earth compounds, KEu[AsS4] (1), K3Dy[AsS4]2 (2), and Rb4Nd0.67[AsS4]2 (3) have been synthesized employing the molten flux method. The reactions of A2S3 (A = K, Rb), Ln (Ln = Eu, Dy, Nd), As2S3, S were accomplished at 600 °C for 96 h in evacuated fused silica ampoules. Crystal data for these compounds are: 1, monoclinic, space group P21/m (no. 11), a = 6.7276(7) Å, b = 6.7190(5) Å, c = 8.6947(9) Å, β = 107.287(12)°, Z = 2; 2, monoclinic, space group C2/c (no. 15), a = 10.3381(7) Å, b = 18.7439(12) Å, c = 8.8185(6) Å, β = 117.060(7)°, Z = 4; 3, orthorhombic, space group Ibam (no. 72), a = 18.7333(15) Å, b = 9.1461(5) Å, c = 10.2060(6) Å, Z = 4. 1 is a two-dimensional structure with 2[Eu(AsS4)] layers separated by potassium cations. Within each layer, distorted bicapped trigonal [EuS8] prisms are linked through distorted [AsS4]3− tetrahedra. Each Eu2+ cation is coordinated by two [AsS4]3− units by edge-sharing and bonded to further two [AsS4]3− units by corner-sharing. Compound 2 contains a one-dimensional structure with 1[Dy(AsS4)2]3− chains separated by potassium cations. Within each chain, distorted bicapped trigonal prisms of [DyS8] are linked by slightly distorted [AsS4]3− tetrahedra. Each Dy3+ ion is surrounded by four [AsS4]3− moieties in an edge-sharing fashion. For compound 3 also a one-dimensional structure with 1[Nd0.67(AsS4)2]4− chains is observed. But the Nd position is only partially occupied and overall every third Nd atom is missing along the chain. This cuts the infinite chains into short dimers containing two bridging [As4]3− units and four terminal [AsS4]3− groups. 1 is characterized with UV/vis diffuse reflectance spectroscopy, IR, and Raman spectra.  相似文献   

7.
Two new potassium vanadium phosphates have been prepared and their structures have been determined from analysis of single crystal X-ray data. The two compounds, K3(VO)(V2O3) (PO4)2(HPO4) and K3(VO)(HV2O3)(PO4)2(HPO4), are isostructural, except for the incorporation of an extra hydrogen atom into the nearly identical frameworks. The structures consist of a three-dimensional network of [VO]n chains connected through phosphate groups to a [V2O3] moiety. Magnetic susceptibility experiments indicate that in the case of the di-hydrogen compound, there are no significant magnetic interactions between the three independent vanadium (IV) centers. Crystal data: for K3(VO)(V2O3)(PO4)2 (HPO4), Mr = 620.02, orthorhombic space group Pnma (No. 62), a = 7.023(4) Å, b = 13.309(7) Å, c = 14.294(7) Å, V = 1336(2) Å3, Z = 4, R = 5.02%, and Rw = 5.24% for 1238 observed reflections [I > 3σ(I)]; for K3(VO)(HV2O3)(PO4)2(HPO4), Mr = 621.04, orthorhombic space group Pnma (No. 62), a = 6.975(3) Å, b = 13.559(7) Å, c = 14.130(7) Å, V = 1336(1) Å3, Z = 4, R = 6.02%, and Rw = 6.34% for 1465 observed reflections [I > 3σ(I)].  相似文献   

8.
Two novel heterometallic trinuclear incomplete cubane-like clusters [(CH3CH2)4N][{M2CuS4}(edt)2(PPh3)] (M = Mo, W) have been synthesized by reaction of [(CH3CH2)4N]2[M2S4(edt)2] (M = Mo, W) with Cu(PPh3)2(dtp) [where edt is 1,2-ethane-dithiolato ligand, dtp is S2P(OCH2CH3)2]. The two crystals are isomorphous in space group P1 (No. 1). The unit cell contains two independent molecules, but the two discrete anions have the same orientation for the PPh3 ligands along one axis so the space group is undoubtedly non-centrosymmetric. The discrete anion contains two edt ligands and one PPh3 ligand attached to one incomplete cubane-like cluster core {M2CuS4}3+ (M = Mo, W). The bond lengths of Mo---Mo[W---W] and the two Mo---Cu[W-Cu] are 2.852(2)[2.844(1)], 2.802(2)[2.765(3)], 2.760(2)[2.762(3)] Å, respectively. The M 2S4(edt)2 (M = Mo, W) moiety remains almost unchanged, except that for the compound 1 the Mo=S double bond length elongates from av. 2.10 to av. 2.165 Å. The title clusters provide a new type of unsymmetric μ2-bridging sulphido ligand. The incomplete cubane-like cluster core {Mo2CuS4}3+ of compound 1 is distorted because the two Cu---μ2---S bond lengths are significantly different (2.313 Å and 2.409 Å), but the core {W2CuS4}3+ of compound 2 has approximately Cs symmetry. The IR spectra of the two title clusters and two starting materials are assigned.  相似文献   

9.
A novel thioantimonate(III) [(CH3NH3)1.03K2.97]Sb12S20·1.34H2O was synthesized hydrothermally. It crystallizes in space groupP , witha=11.9939(7) Å,b=12.8790(8) Å,c=14.9695(9) Å,α=100.033(1)°,β=99.691(1)°,γ=108.582(1)°,V=2095.3(2) Å3, andZ=2. The structure is determined from single crystal X-ray diffraction data collected at room temperature and refined toR(F)=0.037. In the crystal structure, each Sb(III) atoms has short bonds (2.37–2.58 Å) to three S atoms. The pyramidal [SbS3] groups share common S atoms forming two types of centrosymmetric [Sb12S20] rings with the same topology. These rings are interconnected by weaker Sb–S bonds (2.92–3.29 Å) into 2-dimensional layers. Adjacent layers are parallel with K+and CH3NH+3ions and H2O molecules located between them. Variation of bond valence sums calculated for the Sb(III) cations is found to be correlated with the coordination geometry. This is interpreted as due to the stereochemical activity of their lone electron pairs.  相似文献   

10.
Two oxoborates, (Pb3O)2(BO3)2MO4 (M=Cr, Mo), have been prepared by solid-state reactions below 700 °C. Single-crystal XRD analyses showed that the Cr compound crystallizes in the orthorhombic group Pnma with a=6.4160(13) Å, b=11.635(2) Å, c=18.164(4) Å, Z=4 and the Mo analog in the group Cmcm with a=18.446(4) Å, b=6.3557(13) Å, c=11.657(2) Å, Z=4. Both compounds are characterized by one-dimensional chains formed by corner-sharing OPb4 tetrahedra. BO3 and CrO4 (MoO4) groups are located around the chains to hold them together via Pb–O bonds. The IR spectra further confirmed the presence of BO3 groups in both structures and UV–vis diffuse reflectance spectra showed band gaps of about 1.8 and 2.9 eV for the Cr and Mo compounds, respectively. Band structure calculations indicated that (Pb3O)2(BO3)2MoO4 is a direct semiconductor with the calculated energy gap of about 2.4 eV.  相似文献   

11.
Compounds Ce2TiO5, Ce2Ti2O7, and Ce4Ti9O24 were prepared by heating appropriate mixtures of solids containing Ce4+ and Ti3+ or Ti which were placed in a platinum-silica-ampoule combination at T = 1250°C (3d) under vacuum. The new compounds were characterized by powder patterns. We obtained Ce2TiO5 which is isotypic to La2TiO5 and crystallizes in the Y2TiO5-type (space group Pnma) with a = 10.877(6) Å, b = 3.893(1) Å, c = 11.389(8) Å, Z = 4. Ce2Ti2O7 is isotypic to La2Ti2O7 and crystallizes in the monoclinic Ca2Nb2O7 type (space group P 21) with a = 7.776(6) Å, b = 5.515(4) Å, c = 12.999(6) Å, β = 98.36(5), Z = 4. The compound Ce4Ti9O24 crystallizes orthorhombic with a = 14.082(4) Å, b = 35.419(8) Å, c = 14.516(4) Å, Z = 16. The new cerium titanate Ce4Ti9O24 is isotypic to Nd4Ti9O24 (space group Fddd (No. 70)) which represents a novel type of structure.  相似文献   

12.
Investigation into the synthesis of reduced vanadium phosphate has led to the formation of a new form of the barium vanadium (III) pyrophosphate compound β-BaV2(P2O7)2. It is a polymorph of the previously known BaV2(P2O7)2, which is now labeled as the α-phase. The title compound crystallizes in the P-1 (No. 2) space group with a = 6.269(1) Å, b = 7.864(3) Å, c = 6.1592(9) Å, α = 101.34(2)°, β = 105.84(1)°, and γ = 96.51(2)°. The structure consists of corner-shared VO6 octahedra and PO4 tetrahedra that are connected in V-O-P-O-V and V-O-P-O-P-O-V bonding arrangements. This interesting three-dimensional framework is characterized by seven types of intersecting tunnels, three of which are occupied by the barium cation, while the others are empty. It is important to know that one of the empty tunnels has a relatively large window with a minimum diagonal distance of 4.41 Å, which facilitates a possible framework for a lithium ion insertion reaction. The barium atom has a 10-coordination sphere, BaO10, in which the oxygen atoms can be viewed as forming two intersecting pseudohexagonal planes. β-BaV2(P2O7)2 appears to form at a relatively higher temperature than its polymorph, α-BaV2(P2O7)2. A detailed structural analysis and structural comparison with the α-phase, as well as a brief comparison with SrV2(P2O7)2, are presented.  相似文献   

13.
Two new mixed valent Mo(III)/Mo(IV) diphosphates containing lead Pb2(PbO)2Mo8(P2O7)8 and PbK2Mo8(P2O7)8 have been synthesized. The [Mo8P16O56]∞ frameworks of these phosphates are closely related to that of K0.17MoP2O7: the MoO6 octahedra and P2O7 groups form two sorts of large eight-sided tunnels. They are occupied in an ordered way by PbO chains and Pb2+ cations in Pb2(PbO)2Mo8(P2O7)8 and by K+ and Pb2+ cations in PbK2Mo8(P2O7)8. It results in different symmetries of these two structures, which are tetragonal and monoclinic, respectively, showing the great flexibility of these mixed frameworks, susceptible to accommodate various species with different sizes.  相似文献   

14.
The reaction of hydrogen sulphide with [Co(H2O)6](BF4)2 and triethylphosphine in the presence of sodium tetraphenylborate or tetrabutylammonium hexafluorophosphate gave the paramagnetic clusters [Co63-S)8(PEt3)6](Y) (Y = BPh4, (1), PF6, (2)). These compounds can be easily reduced by sodium napthalenide to the diamagnetic species [Co63-S)8(PEt3)6] · 2C4H8O (3). The molecular structures of 1 and 3 have been established by single-crystal X-ray diffraction methods. Crystal data: (1) space group P , a = 19.481(9), b = 15.562(7), c = 12.390(b) Å, α = 92.70(8), β = 94.50(7), γ = 94.10(9)°, Z = 2, (3) space group R , a = 11.780(6) Å, α = 92.50(7)°, Z = 1. Both structures were solved by the heavy atom method and refined by full-matrix least-squares techniques to the conventional R factors values of 0.050 for 1 and 0.044 for 3 on the basis of 4251 and 1918 observed reflections, respectively. The two clusters [Co63-S)8)(PEt3)6]1+,0 are isostructural, the inner core consisting of an octahedron of cobalt atoms with all the faces symmetrically capped by triply bridging sulphur atoms. Each metal centre is additionally linked to a triethylphosphine group so that each cobalt atom is co-ordinated by four sulphur atoms and one phosphorus in a distorted square pyramidal environment. The addition of one electron whilst leaving unchanged the geometry of the inner framework, induces small changes in the structural parameters, the average Co---Co and Co---P distances being 2.794 (3) and 2.162 (2) Å for 1 and 2.817 (3) and 2.138 (2) Å for 3 respectively. Electrochemistry in non-aqueous solvents shows the electron-transfer sequence
The tricationic species is stable only in the short time of cyclic voltammetric tests.  相似文献   

15.
Lewis-base mediated fragmentation of polymeric nickel(II) fumarate and oxalate are attempted using chelating σ-donor diamines like ethylenediamine (en) and 1,3-diaminopropane (dap) in various conditions which yielded [Ni(en)3](fum)·3H2O (1), [Ni(en)3](ox) (2), [Ni(dap)2(fum)] (3) and [Ni(dap)(ox)]·2H2O (4). While 1 and 2 are molecular products each containing octahedral [Ni(en)3]2+ moieties and the anionic dicarboxylate species, 3 and 4 are dap-incorporated polymeric products. The fumarate derivative 1 containing [Ni(en)3]2+ moieties crystallizes in the monoclinic space group C2/c with a = 17.899(4) Å, b = 11.747(2) Å, c = 10.748(2) Å, β = 125.59(3)°, V = 1837.7(6) Å3, Z = 4, while the oxalate analogue 2 is seen to be in the trigonal space group P−31c with a = 8.8770(13) Å, b = 8.8770(13) Å, c = 10.482(2) Å, γ = 120°, V = 715.3(2) Å3, Z = 2. The octahedral [Ni(en)3] units in both 1 and 2 are seen to be strongly H-bonded to the dicarboxylate moieties through the coordinated en units leading to a three-dimensional network. However, in 1 the water molecules also take part in the H-bonding and contribute to the overall 3D structure. In both 1 and 2 the crystal packing is done with the [Ni(en)3]2+ units with absolute configuration Λ(δδδ) and its mirror conformer with Δ configuration in exactly equal numbers. Spectral (IR and UV–Visible) and magnetic measurements were carried out and some of the ligand-field parameters like Dq, B and β were evaluated for all the four compounds. These values suggest the presence of octahedrally coordinated nickel(II) in all the four complexes. Spectral data suggest that 3 has the two chelating dap moieties and the fumarate coordinated in η1 form through both its carboxylate moieties while 4 has one chelating dap and the oxalate moiety coordinated in η4-bis-chelating form. Though both 1 and 2 are made of the same type of [Ni(en)3]2+ units their thermograms give entirely different thermal features; 1 showing three clearly successive and step-wise dissociation of each en unit while 2 having a combined loss of two en units in the first thermal step. The relevant thermodynamic and kinetic parameters like Ea and ΔS also could be evaluated for various thermal steps for the compounds 14 using Coats–Redfern equation.  相似文献   

16.
The crystal structures of Sr10Ga6O19 and Sr3Ga2O6 have been characterized using X-ray diffraction techniques. In the case of Sr10Ga6O19, the structure was determined from a single crystal diffraction data set collected at room conditions and refined to a final R index of 0.061 for 3471 observed reflections (I>2 σ(I)). The compound is monoclinic with space group C12/c1 (a=34.973(4) Å, b=7.934(1) Å, c=15.943(2) Å, β=103.55(1)°, V=4300.7(6) Å3, Z=8, Dcalc=4.94 g/cm3, μ(Mo)=32.04 mm−1) and can be classified as an oligogallate. It is the first example of an inorganic compound where six [TO4]-tetrahedra of only one chemical species occupying the tetrahedral centres are linked via bridging oxygen atoms to form [T6O19] groups. The hexamers are not linear, but highly puckered. Eleven symmetrically different Sr cations located in planes parallel (100) crosslink between the oligo-groups. They are coordinated by six to eight oxygen ligands. The structure of Sr3Ga2O6 has been refined from powder diffraction data using the Rietveld method (space group Pa , a=16.1049(1), V=4177.1(1) Å3, Z=24, Dcalc=4.75 g/cm3). The compound is isostructural with tricalcium aluminate and contains highly puckered, six-membered [Ga6O18]18− rings. The rings are linked by strontium cations having six to nine nearest oxygen neighbors.  相似文献   

17.
A Mo(V) oligophosphate, built up of di and triphosphate groups, Cs(MoO)4(P2O7)2(P3O10) has been synthesized for the first time. This compound crystallizes in the triclinic P−1 space group with , , , α=94.534(6)°, β=102.520(6)°, γ=103.663(4)°. This original structure can be described by the association of MoO6 octahedra, MoP2O11 units built up of one P2O7 group sharing two apices with the same MoO6 octahedron, and triphosphates groups P3O10. The resulting tridimensional framework forms large S-shaped tunnels running along c where the Cs+ cations are located.  相似文献   

18.
The reaction of Nb, S, and Br2 in a sealed quartz ampoule at 550°C yielded Nb3SBr7. The structure of Nb3SBr7 determined by the single-crystal X-ray diffraction method (P3m1, a= 7.1012(6) Å, c = 6.3040(9) Å, V = 275.30(9) Å3, Z = 1, dcalc = 5.248(2) g/cm3, R = 0.0395, Rw = 0.0392) consists of one-layer packing of {[Nb3SBr3]Br6/2Br3/3}2 layers. The molecular orbitals of the model anions [Nb3Br13]5- and [Nb3SBr12]5-, which involve the triangle Nb3 cluster with the nearest ligand environment in the structures of Nb3Br8 and Nb3SBr7, respectively, were calculated by applying the extended Hückel method. The HOMO in [Nb3Br13]5- has slightly metal-metal bonding character which is consistent with an Nb-Nb bond length increase from 2.88 Å in a seven-electron Nb3Br8 to 2.896(1) Å in a six-electron Nb3SBr7. The bonding schemes are in accordance with magnetic properties of Nb3Br8, which is paramagnetic, and Nb3SBr7, which is diamagnetic.  相似文献   

19.
[C4H9)4N]2[Mo2O7] reacts with a variety of organic species containing α-diketone groups to give tetranuclear complexes of general composition [RMo4O15X]3−. The complexes [(C4H9)4N]3[(C9H4O)Mo4O15(OCH3)] (I), [(C4H9)4N]3[(C14H10)Mo4O15(C6H5CO2)] (11) and [(C4H9)4N]3[(C14H8)Mo4O15(OH)] (III) were synthesized from the reactions of dimolybdate with ninhydrin, benzil and phenanthraquinone, respectively. Complex II may also be prepared from dimolybdate and benzoin in acetonitrile-methanol solution, from which it co-crystallizes with the binuclear species [(C4H9)4N]2[Mo2O5(C6H5C(O)C(O)C6H5)2] · CH3CN · CH3OH (IV). Complexes I–III exhibit the tetranuclear core, previously described for the α-glyoxal derivatives [(C4H9)4N]3[(HCCH)Mo4O15X], where X = F or HCO2. The ligands may be formally described as diketals, formed by insertion of ligand carbonyl subunits into molybdenum-oxygen bonds. The structures I–III differ most dramatically in the identity and coordination mode of the anionic ligand X which occupies a position opposite the diketal moiety relative to the [Mo4O11]2+ central cage. Thus, I exhibits a doubly bridging methoxy group in this position, while II possesses a benzoate ligand with an unusual μ3-O,O′coordination mode. Complex III presents a hydroxy-group unsymmetrically bonded to three of the molybdenum centres. The stereochemical consequences of the various coordination modes are discussed. Crystal data: Compound I, monoclinic space group Pc, a = 24.888(2), b = 12.897(3), c = 24.900(3) Å, β = 101.94(2)°, Dcalc = 1.28 g cm−1 for Z = 4. Structure solution and refinement based on 8695 reflections with Fo 6σ(Fo) (Mo-Kα, λ = 0.71073 Å) converged at a conventional discrepancy factor of 0.060. Compound II, orthorhombic space group Pbca, a = 20.426(6), b = 26.916(6), c = 32.147(7) Å, V = 17673.2(20) Å3, Dcalc = 1.33 g cm−3 for Z = 8; 5224 reflections, R = 0.076. Compound III, tetragonal space group I41/a, a = b = 48.129(6), c = 13.057(2) Å, V = 30246.2(12) Å3, Dcalc = 1.35 g cm−3 for Z = 16; 5554 reflections, R = 0.053. Compound IV, orthorhombic space group Pnca, a = 16.097(4), b = 16.755(4), c = 25.986(7) Å, V = 7008.1(13) Å3, Z = 4, Dcalc = 1.18 g cm−3 ; 2944 reflections, R = 0.061.  相似文献   

20.
Carbonyl–iridium half-sandwich compounds, Cp*Ir(CO)(EPh)2 (E=S, Se), were prepared by the photo-induced reaction of Cp*Ir(CO)2 with the diphenyl dichalcogenides, E2Ph2, and used as neutral chelating ligands in carbonylmetal complexes such as Cp*Ir(CO)(μ-EPh)2[Cr(CO)4], Cp*Ir(CO)(μ-EPh)2[Mo(CO)4] and Cp*Ir(CO)(μ-EPh)2[Fe(CO)3], respectively. A trimethylphosphane–iridium analogue, Cp*Ir(PMe3)(μ-SeMe)2[Cr(CO)4], was also obtained. The new heterodimetallic complexes were characterized by IR and NMR spectroscopy, and the molecular geometry of Cp*Ir(CO)(μ-SePh)2[Mo(CO)4] has been determined by a single crystal X-ray structure analysis. According to the long Ir…Mo distance (395.3(1) Å), direct metal–metal interactions appear to be absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号