首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The tautomeric properties of acetoacetamide, CH3C(O)CH2C(O)NH2, have been investigated by gas electron diffraction (GED) and quantum chemical calculations (B3LYP and MP2 approximations with 6-31G(d,p) and 6-311++G(3df,pd) basis sets). GED results in a mixture of 63(7)% enol tautomer and 37(7)% diketo form at 74(5) degrees C. Only one enol form with the O-H bond adjacent to the methyl group (CH3C(OH)=CHC(O)NH2) and only one diketo conformer (with dihedral angles tau(O=C(CH3)-C-C) = 31.7(7.5) degrees and tau(O=C(NH2)-C(H2)-C(O)) = 130.9(4.5) degrees ) are present. The calculated tautomeric composition varies in a wide range depending on the quantum chemical method and basis set. Only the B3LYP method with small basis sets reproduces the experimental composition correctly.  相似文献   

2.
The tautomeric properties of alpha-chlorinated acetylacetone, 3-chloro-2,4-pentanedione CH3C(O)-CHCl-C(O)CH3, have been investigated by gas electron diffraction (GED) and quantum chemical calculations (B3LYP and MP2 approximations with different basis sets up to cc-pVTZ). Analysis of the GED intensities resulted in the presence of 100(2)% enol tautomer at 269(8) K. The following skeletal geometric parameters (rh1 values) of the molecule, which possesses Cs symmetry, were derived: r(C=C) = 1.378(3) A, r(C-C) = 1.450(3) A, r(C=O) = 1.243(3) A, r(C-O) = 1.319(3) A, r(O-H) = 1.001(4) A, r(C-Cl) = 1.752(4) A, angleC-C=C = 121.3(1.0) degrees , angleC=C-O = 119.9(1.2) degrees , angleC-C=O = 119.1(1.2) degrees . Due to very small contributions of the keto tautomer in alpha-chlorinated acetylacetone and its parent species, the effect of alpha-chlorination on tautomeric properties cannot be derived from experimental data. Quantum chemical calculations (B3LYP/6-31G**, B3LYP/cc-pVTZ, and MP2/cc-pVTZ) predict that alpha-chlorination of acetylacetone has no pronounced effect on the tautomeric properties. On the other hand, similar calculations for 1-chloro-1,3-butanedion, ClC(O)-CH2-C(O)CH3, demonstrate that chlorination in one beta position destabilizes the enol tautomer. In both chlorinated species the enol form is strongly preferred.  相似文献   

3.
Condensation of phenyl isocyanate substituted by 4-MeO, 4-Me, 4-H, 4-Br, and 2,4-(MeO)(2) with esters CH(2)(CO(2)R)CO(2)R', R = CH(2)CF(3), R' = CH(3), CH(2)CF(3), CH(CF(3))(2), or R = CH(3), R' = CH(CF(3))(2) gave 17 "amides" ArNHCOCH(CO(2)R)CO(2)R' containing three, six, or nine fluorines in the ester groups. X-ray crystallography of six of them revealed that compounds with > or =6 fluorine atoms exist in the solid state as the enols of amides ArNHC(OH)=C(CO(2)R)CO(2)R' whereas the ester with R = R' = CH(3) was shown previously to have the amide structure. In the solid enols, the OH is cis and hydrogen bonded to the better electron-donating (i.e., with fewer fluorine atoms) ester group. X-ray diffraction could not be obtained for compounds with only three fluorine atoms, i.e., R = CH(2)CF(3), R' = CH(3) but the (13)C CP-MAS spectra indicate that they have the amide structure in the solid state, whereas esters with six and nine fluorine atoms display spectra assigned to the enols. The solid enols show unsymmetrical hydrogen bonds and the expected features of push-pull alkenes, e.g., long C(alpha)=C(beta) bonds. The structure in solution depends on the number of fluorine atoms and the solvent, but only slightly on the substituents. The symmetrical systems (R = R' = CH(2)CF(3)) show signals for the amide and the enol, but all systems with R not equal R' displayed signals for the amide and for two enols, presumably the E- and Z-isomers. The [Enol I]/[Enol II] ratio is 1.6-2.9 when R = CH(2)CF(3), R' = CH(3), CH(CF(3))(2) and 4.5-5.3 when R = CH(3), R' = CH(CF(3))(2). The most abundant enol display a lower field delta(OH) and a higher field delta(NH) and assigned the E-structure with a stronger O-H.O=C(OR) hydrogen bond than in the Z-isomer. delta(OH) and delta(NH) values are nearly the same for all systems with the same cis CO(2)R group. The [Enols]/[Amide] ratio in various solvents follows the order CCl(4) > CDCl(3) > CD(3)CN > DMSO-d(6). The enols always predominate in CCl(4) and the amide is the exclusive isomer in DMSO-d(6) and the major one in CD(3)CN. In CDCl(3) the major tautomer depends on the number of fluorines. For example, in CDCl(3,) for Ar = Ph, the % enol (K(Enol)) is 35% (0.54) for R = CH(2)CF(3,) R' = CH(3), 87% (6.7) for R = R' = CH(2)CF(3), 79% (3.8) for R = CH(3), R' = CH(CF(3))(2) and 100% (> or =50) for R = CH(2)CF(3), R' = CH(CF(3))(2). (17)O and (15)N NMR spectra measured for nine of the enols are consistent with the suggested assignments. The data indicate the importance of electron withdrawal at C(beta), of intramolecular hydrogen bonding, and of low polarity solvents in stabilizing the enols. The enols of amides should no longer be regarded as esoteric species.  相似文献   

4.
Park YS  Paek K 《Organic letters》2008,10(21):4867-4870
The resorcin[4]arene-based benzoylhydrazide cavitands formed stable molecular capsules in nonpolar solvents by the eight intermolecular N-H...O=C hydrogen bondings, two from each four paired hydrazides, and the four intramolecular O-H2C-O...H-N hydrogen bondings on each cavitand. The stability of these molecular capsules depends on the encapsulated guest in the following order: CH3SO3(-) > CH3CO2(-) > CH3CH2NH2 x HCl approximately = CH3NH2 x HCl > (CH3)4N(+) > toluene > C2D2Cl4.  相似文献   

5.
由[Mo~3(μ~3-O)(μ-S)~3(dtp)~4(H~2O)和PbI~3^-在咪唑存在下反应获得异四核混合簇[Mo~3(PbI~3)S~4(dtp)~3(C~3H~4N~2)~3][(CH~3)~2CO]~2(2)[dtp=S~2P(OC~2H~5)~2^-]。簇合物属斜方晶系,空间群P~b~c~a(No.61),晶胞参数为a=2.3590(3),b=1.9161(5),c=2.6458(9)nm,V=11.959(6)nm^3,Z=8。结构最终偏离因子R=0.067。此四核簇分子具有[Mo~3PbS~4]类立方烷簇芯,簇分子整体对称性接近C~3~v。在同一不对称单元中,簇分子的咪唑环以(NH)和溶剂丙酮分子的氧原子形成O---H---N氢键。  相似文献   

6.
Reactions of isocyanates XNCO (e.g., X = p-An, Ph, i-Pr) with (MeO)2P(=O)CH2CO2R [R = Me, CF3CH2, (CF3)2CH] gave 15 formal "amides" (MeO)2P(=O)CH(CO2R)CONHX (6/7), and with (CF3CH2O)2P(=O)CH2CO2R [R = Me, CF3CH2] they gave eight analogous amide/enols 17/18. X-ray crystallography of two 6/7, R = (CF3)2CH systems revealed Z-enols of amides structures (MeO)2P(=O)C(CO2CH(CF3)2)=C(OH)NHX 7 where the OH is cis and hydrogen bonded to the O=P(OMe)2 group. The solid phosphonates with R = Me, CF3CH2 have the amide 6 structure. The structures in solution were investigated by 1H, 13C, 19F, and 31P NMR spectra. They depend strongly on the substituent R and the solvent and slightly on the N-substituent X. All systems displayed signals for the amide and the E- and Z-isomers. The low-field two delta(OH) and two delta(NH) values served as a probe for the stereochemistry of the enols. The lower field delta(OH) is not always that for the more abundant enol. The % enol, presented as K(enol), was determined by 1H, 19F, and 31P NMR spectra, increases according to the order for R, Me < CF3CH2 < (CF3)2CH, and decreases according to the order of solvents, CCl4 > CDCl3 approximately THF-d8 > CD3CN >DMSO-d6. In DMSO-d6, the product is mostly only the amide, but a few enols with fluorinated ester groups were observed. The Z-isomers are more stable for all the enols 7 with E/Z ratios of 0.31-0.75, 0.15-0.33, and 0.047-0.16 when R = Me, CF3CH2, and (CF3)2CH, respectively, and for compounds 18, R = Me, whereas the E-isomers are more stable than the Z-isomers. Comparison with systems where the O=P(OMe)2 is replaced by a CO2R shows mostly higher K(enol) values for the O=P(OMe)2-substituted systems. A linear correlation exists between delta(OH)[Z-enols] activated by two ester groups and delta(OH)[E-enols] activated by phosphonate and ester groups. Compounds (MeO)2P(=O)CH(CN)CONHX show 相似文献   

7.
A series of complexes obtained from the reaction of trans-[(CH3NH2)2PtII] with unsubstituted cytosine (CH) and its anion (C), respectively, has been prepared and isolated or detected in solution: trans-[Pt(CH3NH2)2(CH-N3)Cl]Cl.H2O (1), trans-[Pt(CH3NH2)2(CH-N3)2](ClO4)2 (1a), trans-[Pt(CH3NH2)2(C-N3)2].2H2O (1b), trans-[Pt(CH3NH2)2(CH-N3)2](ClO4)(2).2DMSO (1c), trans-[Pt(CH3NH2)2(CH-N1)2] (NO3)(2).3H2O (2a), trans-[Pt(CH3NH2)2(C-N1)2].2H2O (2b), trans-[Pt(CH3NH2)2(CH-N1)(CH-N3)](ClO4)2 (3a), trans-[Pt(CH3NH2)2(C-N1)(C-N3)] (3b), and trans-[Pt(CH3NH2)2(N1-CN3)(N3-C-N1)Cu(OH)]ClO(4).1.2H2O (4). X-ray crystal structures of all these compounds, except 3a and 3b, are reported. Complex 2a is of particular interest in that it contains the rarer of the two 2-oxo-4-amino tautomer forms of cytosine, namely that with the N3 position protonated. Since the effect of PtII on the geometry of the nucleobase is minimal, bond lengths and angles of CH in 2a reflect, to a first approximation, those of the free rare tautomer. Compared to the preferred 2-oxo-4-amino tautomer (N1 site protonated) of CH, the rare tautomer in 2a differs particularly in internal ring angles (7-11 sigma). Formation of compounds containing the rare CH tautomers on a preparative scale can be achieved by a detour (reaction of PtII with the cytosine anion, followed by cytosine reprotonation) or by linkage isomerization (N3-->N1) under alkaline reaction conditions. Surprisingly, in water and over a wide pH range, N1 linkage isomers (3a, 2a) form in considerably higher amounts than can be expected on the basis of the tautomer equilibrium. This is particularly true for the pH range in which the cytosine is present as a neutral species and implies that complexation of the minor tautomer is considerably promoted. Deprotonation of the rare CH tautomers in 2a occurs with pKa values of 6.07 +/- 0.18 (1 sigma) and 7.09 +/- 0.11 (1 sigma). This value compares with pKa 9.06 +/- 0.09 (1 sigma) (average of both ligands) in 1a.  相似文献   

8.
Reaction of isocyanates XNCO (X = Ar, i-Pr, t-Bu) with CH(2)(Y)CO(2)CH(2)CCl(3) (Y = CO(2)Me, CO(2)CH(2)CCl(3), CN) gave 15 amides XNHCOCH(Y)CO(2)CH(2)CCl(3) (6) or enols of amides XNHC(OH)=C(Y)CO(2)CH(2)CCl(3) (5) systems. The amide/enol ratios in solution depend strongly on the substituent Y and the solvent and mildly on the substituent X. The percentage of enol for group Y increases according to Y = CN > CO(2)CH(2)CCl(3) > CO(2)Me and decreases with the solvent according to CCl(4) > C(6)D(6) > CDCl(3) > THF-d(8) > CD(3)CN > DMSO-d(6). With the most acidic systems (Y = CN) amide/enol exchange is observed in moderately polar solvents and ionization to the conjugate base is observed in DMSO-d(6). The solid-state structure of the compound with Y = CN, X = i-Pr was found to be that of the enol. The reasons for the stability of the enols were discussed in terms of polar and resonance effects. Intramolecular hydrogen bonds result in a very low delta(OH) and contribute to the stability of the enols and are responsible for the higher percentage of the E-isomers when Y = CO(2)Me and the Z-isomers when Y = CN. The differences in delta(OH), delta(NH), K(enol), and E/Z enol ratios from the analogues with CF(3) instead of CCl(3) are discussed.  相似文献   

9.
The conformational and tautomeric compositions of malonamide, NH2-C(O)-CH2-C(O)-NH2 were determined by vibrational spectroscopy and theoretical calculations (HF/6-31G*, B3PW91/6-31G*). Solid state Fourier transform infrared and Raman spectra were analysed. They reveal the existence of a diketo tautomer. Theoretical calculations predict a diketo structure belonging to the C1 symmetry group. No enol form is present in the molecule in the solid. 13C-NMR studies show only signals of a diketo tautomer.  相似文献   

10.
Acyl- and Alkylidenephosphines. XVIII. Monoacetyl- and Diacetylphosphine When triacetylphosphine 3a is treated with methanol 4 or benzyl alcohol 6 P? C(O) bonds are cleaved and a mixture of diacetyl- 2a and monoacetylphosphine 1a is formed. The thermally labile phosphine 1a decomposes completely within a few hours at +20°C; but 2a also reacts slowly within days to give triacetylphosphine 3a and further unknown compounds. As it is found by nmr-spectroscopic studies the acidic hydrogen atoms of monoacetylphosphine 1a are both bound to phosphorus. In liquid diacetylphosphine 2a or in solutions of this compound, However, there exists an equilibrium between the keto tautomer K- 2a with a PH and the enol tautomer E- 2a with an O? H? O group; compared with pentane-2,4-dione 8a the keto tautomerpredo minates in 2a . As in 1,3-diketones a low temperature and a small dielectric constant of the solvent increase the amount of enol tautomer E- 2a present. The 1H-nmr resonance of the enolic hydrogen atom is observed at very low field (δ = 18,3 ppm).  相似文献   

11.
Tautomers of 1-methylcytosine that are protonated at N-3 (1+) and C-5 (2+) have been specifically synthesized in the gas phase and characterized by tandem mass spectrometry and quantum chemical calculations. Ion 1+ is the most stable tautomer in aqueous and methanol solution and is likely to be formed by electrospray ionization of 1-methylcytosine and transferred in the gas phase. Gas-phase protonation of 1-methylcytosine produces a mixture of 1+ and the O-2-protonated tautomer (3+), which are nearly isoenergetic. Dissociative ionization of 6-ethyl-5,6-dihydro-1-methylcytosine selectively forms isomer 2+. Upon collisional activation, ions 1+ and 3+ dissociate by loss of ammonia and [C,H,N,O], whose mechanisms have been established by deuterium labeling and ab initio calculations. The main dissociations of 2+ following collisional activation are losses of CH2=C=NH and HN=C=O. The mechanisms of these dissociations have been elucidated by deuterium labeling and theoretical calculations.  相似文献   

12.
The cis-enol of N-acetylamino-p-methylacetophenone was generated flash photolytically and its rates of ketonization in aqueous HClO(4) and NaOH solutions as well as in HCO(2)H, CH(3)CO(2)H, H(2)PO(4)(-), (CH(2)OH)(3)CNH(3)(+), and NH(4)(+) buffers were measured. Rates of enolization of N-acetylamino-p-methylacetophenone to the cis-enol were also measured by hydrogen exchange of its methylene protons, and combination of the enolization and ketonization data gave the keto-enol equilibrium constant pK(E) = 5.33, the acidity constant of the enol ionizing as an oxygen acid pQ(a)(E)= 9.12, and the acidity constant of the ketone ionizing as a carbon acid pQ(a)(K)= 14.45. Comparison of these results with corresponding values for p-methylacetophenone itself shows that the N-acetylamino substituent raises all three of these equilibrium constants: K(E) by 3 orders of magnitude, Q(a)(E) by 1 order of magnitude, and Q(a)(K)by 4 orders of magnitude. This substituent also retards the rate of H+ catalyzed enol ketonization by 4 orders of magnitude. The origins of these substituent effects are discussed.  相似文献   

13.
Tautomeric and structural properties of benzoylacetone, CH(3)-C(O)-CH(2)-C(O)-C(6)H(5), have been studied by gas-phase electron diffraction (GED) and quantum chemical calculations (B3LYP and MP2 approximation with different basis sets up to aug-cc-pVTZ). Analysis of GED intensities resulted in the presence of 100% enol tautomer at 331(5) K. The existence of two possible enol conformers in about equal amounts is confirmed by both GED and quantum chemical results. In both conformers the enol ring possesses C(s) symmetry with a strongly asymmetric hydrogen bond. The experimental geometric parameters are reproduced very closely by the B3LYP/cc-pVTZ method.  相似文献   

14.
The unusual and unique ability of O2 as target gas in kV collision-induced dissociations, to enhance a specific fragmentation of a mass selected ion, has been examined in detail. The affected dissociations studied were the loss of CH3* from CH3CH+X (X = OH, CH3, NH2, SH); CH3* and C1* loss from CH3C+(C1)CH3; C2H5* loss from CH3CH2CH+X (X = OH and NH2); H* loss from +CH2OH and +CH2NH2; O loss from 1,2-, 1,3-, and 1,4-C6H4(NO2)2+*; CH3NO+*; C6HsNO2+*; C5H5NO+* (pyridine N-oxide); 3- and 4-CH3C5H4NO+*. A general explanation of the phenomena, which was semiquantitatively tested in the present work, can be summarized as follows: the ion - O2 encounter excites the target molecules to their 3sigma(g)- state which resonantly return this energy to electronic state(s) in the ion. The excited ion now contains a sharp excess of a narrow range of internal energies, thus significantly and only enhancing fragmentations whose activation energies lie within this small energy manifold.  相似文献   

15.
Reaction of the platinum(III) dimeric complex [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(NO(3))(2)](NO(3))(2) (1), prepared in situ by the oxidation of the platinum blue complex [Pt(4)(NH(3))(8)((CH(3))(3)CCONH)(4)](NO(3))(5) (2) with Na(2)S(2)O(8), with terminal alkynes CH[triple bond]CR (R = (CH(2))(n)CH(3) (n = 2-5), (CH(2))(n)CH(2)OH (n = 0-2), CH(2)OCH(3), and Ph), in water gave a series of ketonyl-Pt(III) dinuclear complexes [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(2)COR)](NO(3))(3) (3, R = (CH(2))(2)CH(3); 4, R = (CH(2))(3)CH(3); 5, R = (CH(2))(4)CH(3); 6, R = (CH(2))(5)CH(3); 7, R = CH(2)OH; 8, R = CH(2)CH(2)OH; 9, R = (CH(2))(2)CH(2)OH; 10, R = CH(2)OCH(3); 11, R = Ph). Internal alkyne 2-butyne reacted with 1 to form the complex [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(CH(3))COCH(3))](NO(3))(3) (12). These reactions show that Pt(III) reacts with alkynes to give various ketonyl complexes. Coordination of the triple bond to the Pt(III) atom at the axial position, followed by nucleophilic attack of water and hydrogen shift from the enol to keto form, would be the mechanism. The structures of complexes 3.H(2)O, 7.0.5C(3)H(4)O, 9, 10, and 12 have been confirmed by X-ray diffraction analysis. A competitive reaction between equimolar 1-pentyne and 1-pentene toward 1 produced complex 3 and [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(2)CH(OH)CH(2)CH(2)CH(3))](NO(3))(3) (14) at a molar ratio of 9:1, suggesting that alkyne is more reactive than alkene. The ketonyl-Pt(III) dinuclear complexes are susceptible to nucleophiles, such as amines, and the reactions with secondary and tertiary amines give the corresponding alpha-amino-substituted ketones and the reduced Pt(II) complex quantitatively. In the reactions with primary amines, the once formed alpha-amino-substituted ketones were further converted to the iminoketones and diimines. The nucleophilic attack at the ketonyl group of the Pt(III) complexes provides a convenient means for the preparation of alpha-aminoketones, alpha-iminoketones, and diimines from the corresponding alkynes and amines.  相似文献   

16.
The characteristics of the intramolecular hydrogen bond (IMHB) for a series of 40 different enols of beta-diketones and their nitrogen counterparts have been systematically analyzed at the B3LYP/6-311+G(3df,2p)//B3LYP/6-311+G(d,p) level of theory. In some cases, two tautomers may exist which are interconnected by a hydrogen shift through the IMHB. In tautomer a the HB donor group (YH) is attached to the six-membered ring, while in tautomer b the HB acceptor (X) is the one that is attached to the six-membered ring. We found that changing an O to a N favors the a tautomer when the atom is endo and the contrary when it is exo, while the presence of a double bond favors the a tautomers. As expected, the OH group behaves as a better HB donor than the NH2 group and the C=NH group as a better HB acceptor than the C=O group, although the first effect clearly dominates. Accordingly, the expected IMHB strength follows the [donor, acceptor] trend: [OH, C=NH] > [OH, C=O] > [NH2, C=NH] > [NH2, C=O]. For all those compounds in which the functionality exhibiting the IMHB is unsaturated (I-type), the IMHB is much stronger than in their saturated counterparts (II-type). However, when the systems of the II-type subset, which are saturated, are constrained to have the HB donor and the HB acceptor lying in the same plane and at the same distance as in the corresponding unsaturated analogue, the IMHB is of similar or even larger strength. Hence, we conclude that, at least for this series of unsaturated compounds, the resonance-assisted hydrogen bond effect is not the primary reason behind the strength of their IMHBs, which is simply a consequence of the structure of the sigma-skeleton of the system that keeps the HB donor and the HB acceptor coplanar and closer to each other.  相似文献   

17.
A search for the enol structures of several amides YY'CHCONHPh with Y,Y' = electron-withdrawing groups (EWGs) was conducted. When Y = CN, Y' = CO(2)Me the solid structure is that of the enol (8b) MeO(2)CC(CN)=C(OH)NHPh, whereas in solution the NMR spectrum indicate the presence of both the amide MeO(2)CCH(CN)CONHPh (8a) and 8b. When Y = NO(2), Y' = CO(2)Et the main compound in CDCl(3) is the amide, but <10% of enol(s), presumably EtO(2)CC(NO(2))=C(OH)NHPh (9b), are also present. When Y = COEt, Y' = CO(2)Me or Y = COMe, Y' = CO(2)Et (10 and 11) enolization in solution and of 11 also in the solid state occurs at the carbonyl rather than at the ester site. With Y = Y' = CN a rapid exchange between the amide (NC)(2)CHCONHPh (12a) and a tautomer, presumably the enol, take place in several solvents on the NMR time scale. With YY' = barbituric acid moiety the species in DMSO-d(6) is an enol of an amide although which CONH group enolizes is unknown. B3LYP/6-31G calculations showed that the enol (NC)(2)C=C(OH)NH(2) (13b) is more stable by DeltaG of 0.4 kcal/mol than (NC)(2)CHCONH(2) (13a) due to a combination of stabilization of 13b and destabilization of 13a and both are much more stable than the hydroxyimine and ketene imine tautomers. The effect of Y,Y' and the solvent on the relative stabilization of enols of amides is discussed.  相似文献   

18.
Proton translocation along ammonia wires is investigated in 7-hydroxyquinoline.(NH(3))(n) clusters, both experimentally by laser spectroscopy and theoretically by Hartree-Fock and density functional (DFT) calculations. These clusters serve as realistic finite-size models for proton transfer along a chain of hydrogen-bonded solvent molecules. In the enol tautomer of 7-hydroxyquinoline (7-HQ), the OH group acts as a proton injection site into the (NH(3))(n)cluster. Proton translocation along a chain of three NH(3) molecules within the cluster can take place, followed by reprotonation of 7-HQ at the quinolinic N atom, forming the 7-ketoquinoline tautomer. Exoergic proton transfer from the OH group of 7-HQ to the closest NH(3) molecule within the cluster giving a zwitterion 7-HQ-.(NH(3))(6)H+ (denoted PT-A) occurs at a threshold cluster size of n = 6 in the DFT calculations and at n = 5 or 6 experimentally. Three further locally stable zwitterion clusters denoted PT-B, PT-B', and PT-C, the keto tautomer, and several transition structures along the proton translocation path were characterized theoretically. Grotthus-type proton-hopping mechanisms occur for three of the proton transfer steps, which have low barriers and are exoergic or weakly endoergic. The step with the highest barrier involves a complex proton transfer mechanism, involving structural reorganization and large-scale diffusive motions of the cluster.  相似文献   

19.
Density functional theory calculations have been carried out to survey the gas-phase reactions of allylamine with Co+. The geometries and bonding characteristics of all the stationary points involved in the reactions have been investigated at the B3LYP/6-311++G(d,p) level. Final energies are obtained by means of the B3LYP/6-311+G(2df,2pd) single-point calculations. The performance of these theoretical methods is valuated with respect to the available thermochemical data. Co+ strongly binds allylamine by forming a chelated structure in which the metal cation binds concomitantly to the two functional groups of the neutral molecule. Various mechanisms leading to the loss of NH3, NH2, C2H2, and H2 are analyzed in terms of the topology of the potential energy surface. The most favorable mechanism corresponds to the loss of NH3, through a process of C-N activation followed by a concerted beta-H shift. The accompanying NH2 elimination is also discussed. The loss of C2H2 is also favorable, through C-C activation and stepwise beta-H shift, giving Co+(NH2CH3) and Co+H(NH2CH2) as the product ions. Various possible channels for the loss of H2 are considered. The most favorable mechanism of the H2 loss corresponds to a pathway through which the metal acts as a carrier, connecting a hydrogen atom from the methylidyne group of allylamine with a hydrogen atom of the terminal methylene group. The product ion of this pathway has a tricoordinated structure in which Co+ binds to the terminal two Cs and N atoms of the NH2CH2CCH moiety.  相似文献   

20.
The intrinsic strength of pi interactions in conjugated and hyperconjugated molecules has been calculated using density functional theory by energy decomposition analysis (EDA) of the interaction energy between the conjugating fragments. The results of the EDA of the trans-polyenes H2C=CH-(HC=CH)n-CH=CH2 (n = 1-3) show that the strength of pi conjugation for each C=C moiety is higher than in trans-1,3-butadiene. The absolute values for the conjugation between Si=Si pi bonds are around two-thirds of the conjugation between C=C bonds but the relative contributions of DeltaE pi to DeltaE orb in the all-silicon systems are higher than in the carbon compounds. The pi conjugation between C=C and C=O or C=NH bonds in H2C=CH--C(H)=O and H2C=CH-C(H)=NH is comparable to the strength of the conjugation between C=C bonds. The pi conjugation in H2C=CH-C(R)=O decreases when R = Me, OH, and NH2 while it increases when R = halogen. The hyperconjugation in ethane is around a quarter as strong as the pi conjugation in ethyne. Very strong hyperconjugation is found in the central C-C bonds in cubylcubane and tetrahedranyltetrahedrane. The hyperconjugation in substituted ethanes X3C-CY3 (X,Y = Me, SiH3, F, Cl) is stronger than in the parent compound particularly when X,Y = SiH3 and Cl. The hyperconjugation in donor-acceptor-substituted ethanes may be very strong; the largest DeltaE pi value was calculated for (SiH3)3C-CCl3 in which the hyperconjugation is stronger than the conjugation in ethene. The breakdown of the hyperconjugation in X3C-CY3 shows that donation of the donor-substituted moiety to the acceptor group is as expected the most important contribution but the reverse interaction is not negligible. The relative strengths of the pi interactions between two C=C double bonds, one C=C double bond and CH3 or CMe3 substituents, and between two CH3 or CMe3 groups, which are separated by one C-C single bond, are in a ratio of 4:2:1. Very strong hyperconjugation is found in HC[triple bond]C-C(SiH3)3 and HC[triple bond]C-CCl3. The extra stabilization of alkenes and alkynes with central multiple bonds over their terminal isomers coming from hyperconjugation is bigger than the total energy difference between the isomeric species. The hyperconjugation in Me-C(R)=O is half as strong as the conjugation in H2C=CH-C(R)=O and shows the same trend for different substituents R. Bond energies and lengths should not be used as indicators of the strength of hyperconjugation because the effect of sigma interactions and electrostatic forces may compensate for the hyperconjugative effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号