首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 744 毫秒
1.
A diode-laser-array end-pumped acousto-optically Q-switched intracavity frequency-doubled Nd:GdVO4/KTP green laser, formed with a three-mirror folded resonator, has been demonstrated. With 15 W of pump power incident upon the Nd:GdVO4 crystal, a maximum average green output power of 3.75 W was obtained at 50 kHz of pulse repetition frequency, giving an optical conversion efficiency of 25%, whereas the effective intracavity frequency-doubling efficiency was determined to be 72%. At the incident pump power of 12.8 W, the shortest laser pulse was achieved at a pulse repetition rate of 10 kHz, the resulting pulse width, single pulse energy, and peak power were measured to be 35 ns, 108 μJ, and 3.1 kW, respectively. Received: 18 May 2000 / Published online: 20 September 2000  相似文献   

2.
A passively Q-switched a-cut Nd:YVO4 self-stimulating Raman laser using a Cr:YAG saturable absorber has been demonstrated for the first time. The maximum average output power of the self-Raman laser at 1176 nm is 347 mW at the incident pump power of 10 W with a pulse repetition frequency (PRF) of 66 kHz. The pulse width, pulse energy of the 1176 nm are found to be 10 ns and 5.6 μJ. The conversion efficiency from diode laser input power to Raman output power is 3.47%.  相似文献   

3.
A compact low-threshold Raman laser at 1178 nm is experimentally realized by using a diode-end-pumped actively Q-switched Nd^3+ :YVO4 self-Raman laser. The threshold is 370mW at a pulse repetition frequency of S kHz. The maximum Raman laser output is 182 m W with the pulse duration smaller than 20 ns at a pulse repetition frequency of 30kHz with 1.8 W incident power. The optical efficiency from the incident power to the Raman laser is 10% and the slope efficiency is 13.5%.  相似文献   

4.
We have demonstrated passively Q-switched mode-locked all-solid-state Nd:YLF laser with an uncoated GaAs wafer as saturable absorber and output mirror simultaneously. Q-switched mode-locking pulses laser with about 100% modulation depth were obtained. The average output power is 890 mW at the incident pump power of 5.76 W, corresponding to an optical slop efficiency of 20%. The temporal duration of mode-locked pulses was about 21 ps. At the Q-switched repetition rate of 30 kHz, the energy and peak power of a single pulse near the maximum of the Q-switched envelope was estimated to be about 1.6 μJ and 76 kW.  相似文献   

5.
The efficient oscillation of LiF:F2 color center laser pumped by a compact LD-pumped Nd:YVO4 acousto optically Q-switched laser with 30 kHz pulse repetition rate was demonstrated. The broadband oscillation with 75 μJ pulse energy and 37 kW peak power with the slope efficiency 20% was obtained. The average output power as high as 230 mW was reached. The narrow line tunable from 1.10 to 1.29 μm laser radiation with 10% conversion efficiency in the maximum of the tuning curve was achieved under pumping with 1.6 W average pump power.  相似文献   

6.
An efficient continuous wave (CW) and Q-switched c-cut Tm:YAP laser is reported in this letter. With the dual-end-pumped convex-concave resonator, CW output power up to 13.6 W at 1.99 μm was obtained under a total incident pump power of 50 W. The corresponding slope efficiency was 34.3% and conversion efficiency was 27.2%. The active Q-switched operation of the laser had an average output power of 12.5 W at 10 kHz pulse repetition frequency, with a minimum pulse width of 126 ns. With 6 kHz pulse repetition frequency, the maximum pulse energy of 1.6 mJ was obtained. In addition, using the Tm:YAP laser as a pumping source for gain-switched Cr:ZnSe laser, as much as 4 W output power in the wavelength range of 2.5–2.6 μm was obtained.  相似文献   

7.
We developed a high-power oscillator–regenerative amplifier femtosecond laser system. Based on chromium-doped forsterite. The system is operating near 1.25 μm at a 5–10 kHz repetition rate. Chirped-pulse amplification produced 0.86 W (0.75 W) of average power, or 465 mW (400 mW) after compression at 5 kHz (10 kHz). Nearly bandwidth-limited pulses of duration 135 fs (shortest) and 150 fs (typical) are available with an energy of 93 μJ and 40 μJ at 5 and 10 kHz, respectively. Received: 7 June 2002 / Published online: 15 November 2002 RID="*" ID="*"Corresponding author. Fax: +49-30/63921289, E-mail: petrov@mbi-berlin.de  相似文献   

8.
Q-switched and cw operation of different diode-pumped erbium-ytterbium doped glasses at 1.5 μm has been studied in a compact microlaser setup. For Q-switching we used a novel PbS semiconductor quantum-dot doped glass which offers low saturation intensity compared with typical absorbers used and a fast time response. The cw laser delivered output powers of 35 mW with slope efficiencies of 16%. In Q-switched operation pulse energies of 1 μJ at repetition rates of 1–2 kHz and pulse durations of about 30–50 ns, depending on absorber thickness were obtained. Received: 5 June 2000 / Revised version: 29 June 2000 / Published online: 13 September 2000  相似文献   

9.
We demonstrate a passively Q-switched Nd:LuVO4 laser at 916 nm by using a Nd, Cr:YAG crystal as the saturable absorber. As we know, it is the first time to realize the laser with a simple linear resonator. When the incident pump power increased from 14.6 W to 23.7 W, the pulse width of the Q-switched laser decreased from 24 ns to 21 ns. The pulse width was insensitive to the incident pump power in the experiment. The average output power of 288 mW with repetition rate of 39 kHz was obtained at an incident pump power of 22.5 W, with the optical-to-optical efficiency and slope efficiency 1.3% and 3.6%, respectively.  相似文献   

10.
Frequency doubling the output of a high-power femtosecond Cr:forsterite regenerative amplifier with >50% conversion efficiency in a temperature-tuned noncritically phase-matched LBO crystal produces femtosecond pulses of >100 μJ energy in the visible range near 625 nm at a pulse duration of about 200 fs or >65 μJ at <170 fs. Received: 29 March 1999 / Revised version: 27 April 1999 / Published online: 24 June 1999  相似文献   

11.
Glass doped with PbS quantum dots is presented as a saturable absorber (SA) for a passive Q-switching of a diode-pumped 1.9 μm Tm:KYW laser. Output pulses with energy of 44 μJ at a repetition rate of 2.5 kHz with an average output power of 110 mW were obtained. The Q-switching conversion efficiency was 33%. The absorption saturation intensity of the glass doped with PbS quantum dots with a mean radius of 5.2 nm at a wavelength of 2 μm was measured to be 1.5 MW/cm2.  相似文献   

12.
A single diode-pumped passively Q-switched composite Nd:YAG/Cr4+:YAG laser, which cavity mirrors were deposited directly onto the crystal, was demonstrated in this paper. At the incident power of 2.75 W, the maximum average output power of 365 mW and the shortest pulse width of 1.7 ns were obtained, corresponding the repetition rate of 14.6 kHz. The single-pulse energy and the peak power were estimated to be 25 μJ and 14 kW, respectively. The corresponding optical-optical conversion efficiency was 13.3%.  相似文献   

13.
An efficient compact diode-pumped acousto-optic actively Q-switched Nd:YAG ceramic laser operating at 1319 nm was demonstrated. At an incident pump power of 23.7 W, an average output power of 4.8 W at a pulse repetition frequency of 30 kHz was obtained. The corresponding optical-to-optical conversion efficiency was 20.3%. A maximum single pulse energy of 316 μJ with a pulse duration of 78.5 ns was obtained at an incident pump power of 19.4 W and a pulse repetition frequency of 10 kHz.  相似文献   

14.
Passively Q-switched output of a diode-pumped 1.34 μm Nd:GdVO4 laser was demonstrated by using Co2+:MgAl2O4(Co2+:MALO) crystal as the saturable absorber for the first time. When the transmission of output mirror is 15%, the Q-switched pulse width is 110 ns and a corresponding average output power is 460 mW under the pump power of 9.69 W. The optical-optical conversion efficiency is 36%. At about 330 kHz repetition rate, the single Q-switched pulse energy and the peak power are about 1.39 μJ and 12.6 W, respectively.  相似文献   

15.
Passively Q-switched laser oscillation at 1060 nm from an unprocessed Nd:LaB3O6 cleavage microchip with a Cr4+:YAG saturable absorber has been demonstrated. The influence of absorbed pump power, output coupler transmission and cavity length on the output pulse characteristics has been investigated. For a plano-concave cavity with a cavity length of 28 mm, pulse with 100 mW average output power, 4.0 μJ energy, 17 ns duration, 25 kHz repetition rate, and 0.24 kW, peak power was obtained at the absorbed pump power of 1.42 W and output coupler transmission of 3.5%. For a plano-plano cavity with a cavity length of 5 mm, pulse with 85 mW average output power, 2.1 μJ energy, 2.3 ns duration, 40 kHz repetition rate, and 0.89 kW, peak power was obtained at the absorbed pump power of 1.42 W and output coupler transmission of 5.6%. Because a chopper with a 5% duty cycle was employed in the experiments to reduce the influence of pump-induced thermal loading, the above average output powers were obtained at the 5% duty cycle and extrapolated to 100%.PACS 42.55.Rz; 42.60.Gd; 42.70.Hj  相似文献   

16.
We reported an actively Q-switched, intracavity Nd3+:YVO4 self-Raman laser at 1176 nm with low threshold and high efficiency. From the extracavity frequency doubling by use of LBO nonlinear crystal, over 3.5 mW, 588 nm yellow laser is achieved. The maximum Raman laser output at is 182 mW with 1.8 W incident pump power. The threshold is only 370 mW at a pulse repetition frequency of 5 kHz. The optical conversion efficiency from incident to the Raman laser is 10%, and 1.9% from Raman laser to the yellow.  相似文献   

17.
Design and operating caracteristics of high pulse repetition rate NH3 laser producing up to 20 W of average output power are described. The NH3 laser, operating in the 12–13 μm region was optically pumped with a high pulse repetition rate TEA CO2 laser. Dependences of the NH3 laser output on the pump energy, ammonia and buffer gas pressures and pulse repetition rate have been studied. The conversion efficiency of up to 16% has been received.  相似文献   

18.
F. Chen  W. W. Wang  J. Liu 《Laser Physics》2010,20(2):454-457
By simple extra-cavity frequency conversion, the performance of a diode single-end-pumped AO Q-switched Nd:GdVO4/KTP/BBO 266 nm laser was demonstrated. Under the incident pump power of 14.32 W, the maximum average output power at 266 nm was 374 mW at the repetition of 20 kHz; the opticaloptical conversion efficiency was 2.6%. The corresponding pulse width was 5 ns, with the single-pulse energy and peak power calculated to be 18.7 μJ and 3.74 kW, respectively. The dependence of the operational parameters on the pump power was also investigated experimentally.  相似文献   

19.
Based on periodically poled lithium niobate (PPLN), a mini intracavity optical parameter oscillator (IOPO) driven by an diode-end-pumped composite Nd3+:YAG/Cr4+:YAG laser was demonstrated. The PPLN wafer has 20 domain reversal periods from 27.8 to 31.6 μm with a step of 0.2 μm between the neighbor periods. The output signal laser of OPO can be widely tunable in the range of 1402–1676 nm by changing the period at a certain temperature of 50°C. Under the diode pump power of 14 W, the maximum average output power of 600 mW at 1534 nm with pulse width of 2.0 ns and repetition rate of 16 kHz was obtained, corresponding to a peak power of 18.7 kW and a single pulse energy of 37.5 μJ, respectively.  相似文献   

20.
A simultaneous self-Q-switched and mode-locked diode-pumped 946 nm laser by using a Cr,Nd:YAG crystal as gain medium as well as saturable absorber is demonstrated for the first time as we know. The maximum average output power of 751 mW with a slope efficiency of 18.38% is obtained at an intra-cavity average peak power intensity of 4.83 × 106 W/cm2. Under this circumstance, the repetition rate of Q-switched envelopes is 9.63 kHz and the pulse width is about 460 ns. Almost 100% mode-locked modulation depth is obtained at all time in the experiment process whether the incident pump power is low or high. The repetition rate of mode-locked pulses within a Q-switched envelope is 135.13 MHz and the mode-locked pulse width is within 600 ps. The laser produces high-quality pulses in TEM00-mode in the simultaneous self-Q-switched and mode-locked experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号