首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The nonlinear absorption of new mesoionic compounds (MIC) was investigated using nanosecond laser pulses with wavelengths at 570, 605 and 618 nm. Nonlinear absorption cross-sections, σ2 ≈ 10−45 cm4 s/photon, larger than any recorded in the literature, were obtained due to the introduction of p-CF3-C6H4 electron-acceptor and p-CH3-C6H4 or p-CH(CH3)2-C6H4 electron-donor groups in the MIC ring. The large values of σ2, the ease of synthesis of these compounds and their marked stability, make them promising candidates for photonic applications.  相似文献   

2.
The influence of the transition metals on the molecular orientation and molecule-substrate interaction has been investigated by angular dependent NEXAFS spectroscopy for the recently synthesised dialkynyl bridged complexes M2-DEBP (Cl(PBu3)2M-CC-C6H4-C6H4-CCM(PBu3)2Cl, M = Pt, Pd; DEBP = diethynyl-biphenyl, i.e. CC-C6H4-C6H4-CC-). Thin films of both samples have been deposited on Au/Si(1 1 1), and the angular dependent analysis of the main π feature deriving by the superimposition of the resonances due to benzene and acetylene carbon orbitals showed a polarisation effect for Pd2-DEBP only. A tendency to a preferential molecular orientation at nearly 50° to the surface was calculated. Furthermore, for Pd2-DEBP, the two π resonances already assigned to benzene and acetylene carbon atoms showed different angular effects; a likely explanation for this behaviour bear in mind the interaction between sp and sp2 carbons of the organic DEBP moieties with Pd centres of neighbouring macromolecules, giving rise to interchain interactions then leading to an enhancement of the already assessed self-assembling properties.  相似文献   

3.
The thermal dissociation of ortho-benzyne (o-C6H4) has been studied behind reflected shock waves under very isolated conditions. In the shock tube experiments 1,2-diiodobenzene was employed as a thermal source for the o-C6H4 radical. For different series of experiments the temperature ranged from 1600 to 2400 K at pressures between 1.4 and 2 bar. Very low initial concentrations of the radical precursor, 0.5-4 ppm diluted in argon, were used. In situ atomic resonance absorption measurement of iodine atoms formed during the thermal dissociation of the radical precursor molecule provides for a precise determination of the initial 1,2-diiodobenzene concentration. ARAS (atomic resonance absorption spectroscopy) was also used to record the absorption profiles of hydrogen atoms obtained during the pyrolysis of ortho-benzyne. From the measured H atom absorption profiles and by taking into account recent results from literature, it is shown that the thermal dissociation of ortho-benzyne occurs via two pathways: besides the molecular route:
(R1a)  相似文献   

4.
Taking account of dipole-multipole interactions of molecules, the Debye dispersion pp is computed in nonpolar liquid solutions. The influence of the multipole interactions between molecules of different components of the solution on the Debye dispersion is demonstrated. It is shown that the theory is in good agreement with experiment for the solutions CCl4-C6H6, CCl4-CS2, C6H6-CS2, and C4H8O2-C6H6.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 13–17, November, 1986.  相似文献   

5.
Haibo Zhao 《Surface science》2009,603(23):3355-12149
The influence of hydrogen coadsorption on hydrocarbon chemistry on transition metal surfaces is a key aspect to an improved understanding of catalytic selective hydrogenation. We have investigated the effects of H preadsorption on adsorption and reaction of 1,3-butadiene (H2CCHCHCH2, C4H6) on Pt(1 1 1) surfaces by using temperature-programmed desorption (TPD) and Auger electron spectroscopy (AES). Preadsorbed hydrogen adatoms decrease the amount of 1,3-butadiene chemisorbed on the surface and chemisorption is completely blocked by the hydrogen monolayer (saturation) coverage (θH = 0.92 ML). No hydrogenation products of reactions between coadsorbed H adatoms and 1,3-butadiene were observed to desorb in TPD experiments over the range of θH investigated (θH = 0.6-0.9 ML). This is in strong contrast to the copious evolution of ethane (CH3CH3, C2H6) from coadsorbed hydrogen and ethylene (CH2CH2, C2H4) on Pt(1 1 1). Hydrogen adatoms effectively (in a 1:1 stoichiometry) remove sites from interaction with chemisorbed 1,3-butadiene, but do not affect adjacent sites. The adsorption energy of coadsorbed 1,3-butadiene is not affected by the presence of hydrogen on Pt(1 1 1). The chemisorbed 1,3-butadiene on hydrogen preadsorbed Pt(1 1 1) completely dehydrogenates to H2 and surface carbon upon heating without any molecular desorption detected, which is identical to that observed on clean Pt(1 1 1). In addition to revealing aspects of site blocking that should have broad implications for hydrogen coadsorption with hydrocarbon molecules on transition metal surfaces in general, these results also provide additional basic information on the surface science of selective catalytic hydrogenation of butadiene in butadiene-butene mixtures.  相似文献   

6.
In this work, a computational technique based on semiempirical SCF MO method MSINDO, has been used for investigation of the adsorption and photocleavage of para-chlorophenol (p-CP) molecule on the anatase TiO2 (0 0 1) and (1 0 0) surfaces. The surfaces have been modeled with two saturated clusters Ti21O58H32 and Ti36O90H36. The optimization of the perpendicular conformation of p-CP molecule relative to the anatase TiO2 (1 0 0) surface, has resulted in a linkage of the molecule to the surface titanium atom via phenolic oxygen atom. We studied the aromatic ring cleavage by singlet oxygen (1O2) and superoxide radical anion () and accordingly, relevant mechanisms are suggested. The results reveal that the ring opening path of p-CP molecule on TiO2 (1 0 0) surface, following the single electron transfer/ mechanism, is energetically more favourable than the 1O2/dioxetane mechanism.  相似文献   

7.
An electronic structural study of the ground electronic states for the chemically similar bicyclic norbornadiene (NBD, C7H8, X1A1), norbornene (NBN, C7H10, X1A′) and norbornane (NBA, C7H12, X1A1) molecules is provided quantum mechanically. Initially, the unique orbital imaging capability of electron momentum spectroscopy is used to validate which of the quantum mechanical models available to us for these calculations best represents these species. Thereafter, individual molecular point group symmetry is incorporated in the calculations with energy minimization in the search for equilibrium geometries of the species using MP2/TZVP and B3LYP/TZVP models. The optimized geometries compare favourably with available crystallographic results and also build confidence in cases where the crystallographic results are ambiguous. The present study aims to reveal the particular subtle structural deviation of the species, which results in significant molecular property differences among these organic compounds. This work intends to probe bonding information of the species and the impact, on the seven member carbon skeleton, as the CC double bonds of NBD are progressively saturated by hydrogen atoms to give NBN and NBA. Significant changes observed through the present work include: (i) the seven member carbon skeleton tends to relax the strain whenever possible and (ii) the ethano ring experiences greater structural changes than the methano bridge. The methano bridge (C(1)-C(7)-C(4)) of the less symmetric NBN molecule (Cs) tilts to the single C-C bond side of the ethano ring of the molecule (rather than the CC side), producing a dihedral angle of 8.7° between plane H-C(1)-C(4) (the yz-plane) and plane C(1)-C(7)-C(4). Our work suggests that it is this unique dihedral angle in NBN which causes the molecules exo-reactivity and is also responsible for the extra activity of its CC bond.  相似文献   

8.
(n-C3H7)4N[FeIIFeIII(dto)3] shows a new type of first order phase transition called charge-transfer phase transition around 120 K, where the charge transfer between FeII and FeIII occurs reversibly. Recently, we have succeeded in obtaining single crystals of the title complex and determined the crystal structure at room temperature. Crystal data: space group P63, Z=2. Moreover, we have investigated the structural transition caused by the charge-transfer phase transition by means of powder X-ray diffraction measurement. When the temperature is decreased, the a-axis, which corresponds to the hexagonal ring size in two-dimensional honeycomb network structure of [FeIIFeIII(dto)3], contracts by 0.1 Å at the charge-transfer transition temperature (TCT), while the c-axis, perpendicular to the honeycomb network layer, elongates by 0.1 Å at TCT. Consequently, when the temperature is decreased, the unit cell volume decreases without noticeable anomaly around TCT, which is responsible for the quite small vibrational contribution to the entropy change, compared with usual spin crossover transition. Thus, the charge-transfer phase transition around 120 K for (n-C3H7)4N[FeIIFeIII(dto)3] is regarded as spin entropy driven phase transition.  相似文献   

9.
Ian Thom 《Surface science》2005,581(1):33-46
The reductive desorption of self-assembled monolayers (SAMs) of ω-(4′-methyl-biphenyl-4-yl)-alkanethiols (CH3-C6H4-C6H4-(CH2)n-SH, BPn) on Au(1 1 1) on mica was studied in 0.5 M KOH solution as a function of the length of the aliphatic spacer chain (n = 1-6 and 12) and for two different preparations temperatures (295 K and 343 K). Second harmonic generation (SHG) was applied in situ parallel to cyclic voltammetry (CV). Odd-even differences in the structure of the BPn monolayers are clearly reflected in the electrochemical stability, as well as by the charge and shape of the desorption peak. For n = 1-5 a single desorption peak is detected whereas multiple peaks occur for BP6 similar to hexadecane thiol which was also studied for comparison. An increased preparation temperature affects the shape and width of the desorption peak but not the position. BP1 exhibits a temperature dependence different from the other homologues. The relationship between coverage monitored by SHG and desorption charge determined from the CVs is found to be linear and surprisingly independent from the details of the SAMs. The combined SHG and CV experiments suggest that capacitive and faradaic current are always closely coupled even for BP6 and hexadecane thiol which exhibit multiple desorption peaks.  相似文献   

10.
Ultrasonic irradiation was used in the synthesis of a series of novel 1,2,4-triazolo[1,5-a]pyrimidines. The products were synthetized from the cyclocondensation reaction of 1,1,1-trifluoro-4-metoxy-3-alken-2-one [CF3C(O)CHC(R)OMe, where R = Ph, 4-F-C6H4, 4-Br-C6H4, 4-I-C6H4, 4-CH3-C6H4, 4-CH3O-C6H4, Thien-2-yl, Biphen-4-yl] or β-enaminones [RC(O)CHCHNMe2, where R = Ph, 4-F-C6H4, 4-Br-C6H4, 4-I-C6H4, 4-CH3-C6H4, 4-CH3O-C6H4, 4-NO2-C6H4, Thien-2-yl, Biphen-4-yl, Naphth-2-yl, Pyrrol-2-yl, CCl3] with 5-amino-1,2,4-triazole in acetic acid at 99 °C with 5–17 min of ultrasound irradiation. This methodology has shown several advantages, such as shorter reaction times, mild conditions, high regioselectivity, and excellent yields, when compared with conventional thermal heating (oil bath).  相似文献   

11.
The gas phase ultraviolet (UV) excimer laser induced photolysis of the gallium-alkyls Ga(t-C4H9) n (CH3)3–n (n=0, 1, 2, 3) was studied, using photolysis wavelengths of 308, 248, and 193 nm. The photofragments Ga, GaH, and GaCH3 were detected by laser ionization time-of-flight mass spectroscopy, while the hydrocarbon products CH4, C2H6, HC(CH3)3 and H2C=C(CH3)2 were identified using Fourier transform infrared (FTIR) spectroscopy. The formation of the GaH photofragment, and a high olefin-to-alkane product ratio, for Ga(t-C4H9)2(CH3) and Ga(t-C4H9)3 are interpreted to indicate a -hydrogen elimination process. However, -hydrogen elimination only occurs after fission of the weakest Ga-C bond, thus no -hydride elimination is observed for Ga(t-C4H9)(CH3)2. Detection of C2H6 for Ga(CH3)3 and Ga(t-C4H9)(CH3)2, but not for Ga(t-C4H9)2(CH3), shows that under our experimental conditions the formation of ethane is as a result of the reductive elimination of the methyl groups, and is not due to the recombination of two free methyl radicals.  相似文献   

12.
We have carried a detailed theoretical study on the geometry, density of states, elastic properties, sound velocities and Debye temperature of α-, β-, c- and p-C3N4 compounds under a maximum of pressure up to 100 GPa by using first principles calculations. The optimized lattice constants under zero pressure and zero temperature agreed well with the previous experimental and theoretical results. The band gaps of the four types of dense C3N4 were widened gradually with the increase of pressure. The calculated Poisson’s ratio γ and B/G values suggest α-, c- and p-C3N4 are brittle materials under 0–100 GPa, whereas β-C3N4 will become a ductile material as external pressure reaches 57 GPa. We found that the Debye temperature of the four dense C3N4 gradually reduces in the order of c-C3N4>p-C3N4>α-C3N4>β-C3N4 at 0 GPa and 0 K. However, the Debye temperature of c-C3N4 was lower than p-C3N4 when external pressure exceeds 6.3 GPa. It may hint that the results could be served as a valuable prediction for further experiments.  相似文献   

13.
Cyclopentadienyl (CPDyl) was generated for study by oxidizing and pyrolizing 1,3-cyclopentadiene (CPD) in Princeton’s adiabatic, atmospheric pressure flow reactor. This study used nitrogen carrier gas, initial CPD concentrations from 1000 to 3000 ppm by volume (ppmv), equivalence ratios from fuel lean (? = 0.6) to pyrolytic conditions (? = 100) and initial temperatures from 1100 to 1200 K. The reaction progress was followed from 5 to 150 ms using a water cooled sample probe and GC-FID analysis of C1-C14 species. The oxidation results show that CPD and CPDyl react via 19 pathways to yield 22 hydrocarbon intermediates. Analysis of the oxidative CPDyl ring opening pathways reveals the importance of the 2,4-cyclopentadienoxy (c-C5H5O) β-scission reaction: c-C5H5O ↔ CHCH-CHCH-CHO. The fastest theoretical mechanism has a calculated unimolecular high-pressure rate constant of 2.00 × 1013e−7215/T s−1 which is seven orders of magnitude larger at 1150 K than the previous literature estimate. Cyclopentadienone (CPDone) has been assumed to be an important intermediate in C5 ring oxidation even though it has not been unambiguously identified in the combustion environment. A detection limit of 20 ppmv for CPDone in the present apparatus failed to note any CPDone. A set of mechanistic pathways for the C5 ring oxidation includes steps to avoid unrealistic CPDone production is presented. The complex mechanism illustrates the need for detailed models to understand the combustion of aromatics and soot precursors. The article stresses the importance of CPDyl in the formation of aromatic rings during combustion, which subsequently leads to polycyclic aromatic hydrocarbons (PAH) and soot precursors.  相似文献   

14.
Recently, we have discovered a new type of first order phase transition around 120 K for (n-C3H7)4N[FeIIFeIII(dto)3] (dto=C2O2S2), where the charge transfer transition between FeII and FeIII occurs reversibly. In order to elucidate the origin of this peculiar first order phase transition. Detailed information about the crystal structure is indispensable. We have synthesized the single crystal of (n-C3H7)4N[CoIIFeIII(dto)3] whose crystal structure is isomorphous to that of (n-C3H7)4N[FeIIFeIII(dto)3], and determined its detailed crystal structure. Crystal data: space group P63, a=b=10.044(2) Å, c=15.960(6) Å, α=β=90°, γ=120°, Z=2 (C18H28NS6O6FeCo). In this complex, we found a ferromagnetic transition at Tc=3.5 K. Moreover, on the basis of the crystal data of (n-C3H7)4N[CoIIFeIII(dto)3], we determined the crystal structure of (n-C3H7)4N[FeIIFeIII(dto)3] by simulation of powder X-ray diffraction results.  相似文献   

15.
The dispersion curves of the dielectric response in single crystal NH4H2PO4 were obtained in the radio frequency range and below the high-temperature transition at Tp−160 °C. The results reveal dielectric relaxation at low frequency, which is about 105 Hz at 70 °C, and it shifts to higher frequencies (∼3×106 Hz) as the temperature increases. The relaxation frequency was determined from the peak obtained in the imaginary part of the permittivity as well as from the derivative of the real part of the permittivity. The activation energy Ea=0.55 eV, obtained from the relaxation frequency is very close to that derived from the dc conductivity. We suggest that this dielectric relaxation could be due to the proton jump and phosphate reorientation that cause distortion and change the local lattice polarizability inducing dipoles like   相似文献   

16.
Surface structures and electronic properties of hypophosphite, H2PO2, molecularly adsorbed on Ni(1 1 1) and Cu(1 1 1) surfaces are investigated in this work by density functional theory at B3LYP/6-31++g(d, p) level. We employ a four-metal-atom cluster as the simplified model for the surface and have fully optimized the geometry and orientation of H2PO2 on the metal cluster. Six stable orientations have been discovered on both Ni (1 1 1) and Cu (1 1 1) surfaces. The most stable orientation of H2PO2 was found to have its two oxygen atoms interact the surface with two PO bonds pointing downward. Results of the Mulliken population analysis showed that the back donation from 3d orbitals of the transition metal substrate to the unfilled 3d orbital of the phosphorus atom in H2PO2 and 4s orbital's acceptance of electron donation from one lone pair of the oxygen atom in H2PO2 play very important roles in the H2PO2 adsorption on the transition metals. The averaged electron configuration of Ni in Ni4 cluster is 4s0.634p0.023d9.35 and that of Cu in Cu4 cluster is 4s1.004p0.033d9.97. Because of this subtle difference of electron configuration, the adsorption energy is larger on the Ni surface than on the Cu surface. The amount of charge transfers due to above two donations is larger from H2PO2 to the Ni surface than to the Cu surface, leading to a more positively charged P atom in NinH2PO2 than in CunH2PO2. These results indicate that the phosphorus atom in NinH2PO2 complex is easier to be attacked by a nucleophile such as OH and subsequent oxidation of H2PO2 can take place more favorably on Ni substrate than on Cu substrate.  相似文献   

17.
A new solvothermal route has been successfully used to prepare crystalline carbon nitride powder from 1,3,5-trichlorotriazine (C3N3Cl3) and lithium nitride (Li3N) in benzene at 360 °C and 6–7 MPa. The as-prepared sample was brown and was analyzed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). The results show that the powder mainly consists of -C3N4, -C3N4 and some unidentified carbon-nitrogen crystalline phases. The experimental lattice constants of -C3N4 (a=6.48 Å,c=4.72 Å) and -C3N4 (a=6.43 Å,c=2.47 Å) match the latest ab-initio calculations (a=6.47 Å and c=4.72 Å for -C3N4, a=6.40 Å and c=2.40 Å for -C3N4) quite well. The relative nitrogen-to-carbon composition ratio is 0.76. Only C–N and C=N bonds were demonstrated by XPS and FTIR. The feasibility of this synthetic method is discussed and this approach may provide a possible and very effective way to realize the growth of pure crystalline carbon nitride materials, which is quite different from the conventional solid-state reactions (SSR). PACS 81.10.-h; 81.10.Dn; 81.05.Zx; 61.66.Fn; 42.70.Nq  相似文献   

18.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

19.
The quadratic, cubic, and semi-diagonal quartic force field of vinyl chloride has been calculated at the MP2 level of theory employing a basis set of triple-ζ quality. The spectroscopic constants derived from this force field are compared with the experimental values. To make this comparison more complete, the rotational constants of the lowest excited state, v9 = 1 at 395 cm−1 have been determined by microwave spectroscopy and the ν12 band (around 618 cm−1) has been investigated by high-resolution infrared Fourier transform spectroscopy. The equilibrium structure has been derived from experimental ground state rotational constants and ab initio rovibrational interaction parameters. This semi-experimental structure is in excellent agreement with the ab initio structure calculated at the CCSD(T) level of theory using a basis set of quintuple-ζ quality and a core correlation correction. The experimental mass-dependent rm structures are also determined and their accuracy is discussed. The recommended equilibrium geometry is: r (CC) = 1.3262(10), r (CCl) = 1.7263(10), r (CHg) = 1.0784(10), r (CHc) = 1.0795(10), r (CHt) = 1.0797(10), ∠(CCCl) = 122.77(10)°, ∠(CCHg) = 123.86(10)°, ∠(CCHc) = 121.80(10)°, ∠(CCHt) = 119.29(10)°.  相似文献   

20.
The oxidation behavior of Ag(1 1 1) was studied by means of in situ surface X-ray diffraction at atmospheric oxygen pressure. Exposure to 1 bar oxygen at 773 K reveals a competing growth of three different oxygen-induced structures on Ag(1 1 1), namely the well-known p(4 × 4) reconstruction, a surface oxide in a p(7 × 7) coincidence structure and the bulk oxide Ag2O in orientation. The latter two exhibit the same honeycomb on hexagon arrangement of the Ag sublattice with respect to the Ag(1 1 1) surface. An inverted stacking of Ag planes in the bulk oxide islands is observed as compared to the Ag(1 1 1) substrate, which sheds new light on the Ag2O formation process. Finally, we present a structural model of the p(7 × 7) reconstruction, based on a three-layer O-Ag-O slab of Ag2O(1 1 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号