首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Be3N2 thin films have been grown on Si(1 1 1) substrates using the pulsed laser deposition method at different substrate temperatures: room temperature (RT), 200 °C, 400 °C, 600 °C and 700 °C. Additionally, two samples were deposited at RT and were annealed after deposition in situ at 600 °C and 700 °C. In order to obtain the stoichiometry of the samples, they have been characterized in situ by X-ray photoelectron (XPS) and reflection electron energy loss spectroscopy (REELS). The influence of the substrate temperature on the morphological and structural properties of the films was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that all prepared films presented the Be3N2 stoichiometry. Formation of whiskers with diameters of 100-200 nm appears at the surface of the films prepared with a substrate temperature of 600 °C or 700 °C. However, the samples grown at RT and annealed at 600 °C or 700 °C do not show whiskers on the surface. The average root mean square (RMS) roughness and the average grain size of the samples grown with respect the substrate temperature is presented. The films grown with a substrate temperature between the room temperature to 400 °C, and the sample annealed in situ at 600 °C were amorphous; while the αBe3N2 phase was presented on the samples with a substrate temperature of 600 °C, 700 °C and that deposited with the substrate at RT and annealed in situ at 700 °C.  相似文献   

2.
Two nanocomposite Ti-Cx-Ny thin films, TiC0.95N0.60 and TiC2.35N0.68, as well as one pure TiN, were deposited at 500 °C on Si(1 0 0) substrate by reactive unbalanced dc-magnetron sputtering. Oxidation experiments of these films were carried out in air at fixed temperatures in a regime of 250-600 °C with an interval of 50 °C. As-deposited and oxidized films were characterized and analyzed using X-ray diffraction (XRD), microindentation, Newton's ring methods and atomic force microscopy (AFM). It was found that the starting oxidation temperature of nanocomposite Ti-Cx-Ny thin films was 300 °C irrespective of the carbon content; however their oxidation rate strongly depended on their carbon content. Higher carbon content caused more serious oxidation. After oxidation, the film hardness value remained up to the starting oxidation temperature, followed by fast decrease with increasing heating temperature. The residual compressive stress did not show a similar trend with the hardness. Its value was first increased with increase of heating temperature, and got its maximum at the starting oxidation temperature. A decrease in residual stress was followed when heating temperature was further increased. The film surface roughness value was slightly increased with heating temperature till the starting oxidation temperature, a great decrease in surface roughness was followed with further increase of heating temperature.  相似文献   

3.
Tin oxide (SnO2) thin films were grown on Si (1 0 0) substrates using pulsed laser deposition (PLD) in O2 gas ambient (10 Pa) and at different substrate temperatures (RT, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). XRD measurements showed that the almost amorphous microstructure transformed into a polycrystalline SnO2 phase. The film deposited at 400 °C has the best crystalline properties, i.e. optimum growth conditions. However, the film grown at 300 °C has minimum average root mean square (RMS) roughness of 3.1 nm with average grain size of 6.958 nm. The thickness of the thin films determined by the ellipsometer data is also presented and discussed.  相似文献   

4.
To study surface behaviors, MgFe2O4 ferrite materials having different grain sizes were synthesized by two different chemical methods, i.e., a polymerization method and a reverse coprecipitation method. The single phase of the cubic MgFe2O4 was confirmed by the X-ray diffraction method for both the precursors decomposed at 600-1000 °C except for a very small peak of Fe2O3 was detected for the samples calcined at 600 and 700 °C by the polymerization method. The crystal size and particle size increased with an increase in the sintering temperature using both methods. The conductance of the MgFe2O4 decreased when the atmosphere was changed from ambient air to air containing 10.0 ppm NO2. The conductance change, C = G(air)/G(10 ppm NO2), was reduced with an increase in the operating temperature. For the polymerization method, the maximum C-value was ca. 40 at 300 °C for the samples sintered at 900 °C. However, the samples sintered at 1000 °C showed a low conductance change in the 10 ppm NO2 gas, because the ratio of the O2 gas adsorption sites on the particle surface is smaller than those of the samples having a high C-value. The low Mg content on the surface affects the low ratio of the gas adsorption sites. For the reverse coprecipitation method, the particle size was smaller than that of the polymerization method. Although a stable conductance was obtained for the sample sintered at 900 and 1000 °C, its conductance change was less than that of the polymerization method.  相似文献   

5.
NbNx films were deposited on Nb substrate using pulsed laser deposition. The effects of substrate deposition temperature, from room temperature to 950 °C, on the preferred orientation, phase, and surface properties of NbNx films were studied by X-ray diffraction, atomic force microscopy, and electron probe micro analyzer. We find that the substrate temperature is a critical factor in determining the phase of the NbNx films. For a substrate temperature up to 450 °C the film showed poor crystalline quality. With temperature increase the film became textured and for a substrate temperature of 650−850 °C, mix of cubic δ-NbN and hexagonal phases (β-Nb2N + δ′-NbN) were formed. Films with a mainly β-Nb2N hexagonal phase were obtained at deposition temperature above 850 °C. The c/a ratio of β-Nb2N hexagonal shows an increase with increased nitrogen content. The surface roughness of the NbNx films increased as the temperature was raised from 450 to 850 °C.  相似文献   

6.
Thermal stability of Ag layer on Ti coated Si substrate for different thicknesses of the Ag layer have been studied. To do this, after sputter-deposition of a 10 nm Ti buffer layer on the Si(1 0 0) substrate, an Ag layer with different thicknesses (150-5 nm) was sputtered on the buffer layer. Post annealing process of the samples was performed in an N2 ambient at a flow rate of 200 ml/min in a temperature range from 500 to 700 °C for 30 min. The electrical property of the heat-treated multilayer with the different thicknesses of Ag layer was examined by four-point-probe sheet resistance measurement at the room temperature. Phase formation and crystallographic orientation of the silver layers were studied by θ-2θ X-ray diffraction analysis. The surface topography and morphology of the heat-treated films were determined by atomic force microscopy, and also, scanning electron microscopy. Four-point- probe electrical measurement showed no considerable variation of sheet resistance by reducing the thickness of the annealed Ag films down to 25 nm. Surface roughness of the Ag films with (1 1 1) preferred crystallographic orientation was much smaller than the film thickness, which is a necessary condition for nanometric contact layers. Therefore, we have shown that the Ag layers with suitable nano-thicknesses sputtered on 10 nm Ti buffer layer were thermally stable up to 700 °C.  相似文献   

7.
Fluorination of polymer surfaces has technological applications in various fields such as microelectronics, biomaterials, textile, packing, etc. In this study PMMA surfaces were fluorinated using DC glow discharge plasma. Tetrafluoroethane was used as the fluorinating agent. On the fluorinated PMMA surface, static water contact angle, surface energy, optical transmittance (UV-vis), XPS and AFM analyses were carried out. After the fluorination PMMA surface becomes hydrophobic with water contact angle of 107° without losing optical transparency. Surface energy of fluorine plasma-treated PMMA decreased from 35 mJ/cm2 to 21.2 mJ/cm2. RMS roughness of the fluorinated surface was 4.01 nm and XPS studies revealed the formation of C-CFx and CF3 groups on the PMMA surface.  相似文献   

8.
CrNx thin films have attracted much attention for semiconductor IC packaging molding dies and forming tools due to their excellent hardness, thermal stability and non-sticking properties (low surface free energy). However, few data has been published on the surface free energy (SFE) of CrNx films at temperatures in the range 20-170 °C. In this study CrNx thin films with CrN, Cr(N), Cr2N (and mixture of these phases) were prepared using closed field unbalanced magnetron sputtering at a wide range of Cr+2 emission intensity. The contact angles of water, di-iodomethane and ethylene glycol on the coated surfaces were measured at temperatures in the range 20-170 °C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the CrNx films and their components (e.g., dispersion, polar) were calculated using the Owens-Wendt geometric mean approach. The influences of CrNx film surface roughness and microstructure on the surface free energy were investigated by atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. The experimental results showed that the lowest total SFE was obtained corresponding to CrN at temperature in 20 °C. This is lower than that of Cr(N), Cr2N (and mixture of these phases). The total SFE, dispersive SFE and polar SFE of CrNx films decreased with increasing surface temperature. The film roughness has an obvious effect on the SFE and there is tendency for the SFE to increase with increasing film surface roughness.  相似文献   

9.
Jianke Yao  Zhengxiu Fan  Jianda Shao 《Optik》2009,120(11):509-513
TiO2/SiO2 high reflectors with and without a SiO2 overcoat are deposited by electron-beam evaporation. The film properties are characterized by visible spectrometry measures, structure analysis, roughness and laser-induced damage threshold (LIDT) tests, surface defects and damage morphology observation. The effects of overcoats on LIDT at 532 nm, 8 ns and 800 nm, 220 ps laser pulses are investigated. The relations between film structure, roughness, surface defects, electric field and LIDT are discussed. It is found that overcoats can increase the LIDT at these two laser wavelengths. The reduction of peak temperature, the low defects density and roughness, the low intrinsic absorption of SiO2 and its amorphous structure are the main reasons for LIDT improvement by overcoats.  相似文献   

10.
We report the effect of substrate temperature (Tsub) in the range 300-900 K on the surface roughness of silicon wafer resulted from femtosecond laser ablation. The surface roughness observed at the laser fluences less then 0.3 J/cm2 increases with increasing Tsub. However, the surface roughness decreases with increasing Tsub for the laser fluences between 0.5 and 1.0 J/cm2. If the laser fluence is higher than 2.0 J/cm2, the surface roughness is independent of Tsub. The effect of Tsub on the surface roughness can be understood in terms of the temperature dependence of optical absorption coefficient of silicon substrate, which eventually alters a mechanism underlying the fs-laser-material ablation process between optical penetration and thermal diffusion processes.  相似文献   

11.
Although extensive research has been conducted in wood surface quality analysis, a unified approach to surface quality characterisation does not exist. Measurements of the variation in surface roughness and surface colour are used widely for the evaluation of wood surface quality. Colour is a basic visual feature for wood and wood-based products. Colour measurement is one of the quality control tests that should be carried out because the colour deviations are spotted easily by the consumers. On the other hand, a common problem faced by plywood manufacturers is panel delamination, for which a major cause is poor quality glue-bonds resulting from rough veneer. Rotary cut veneers with dimensions of 500 mm × 500 mm × 2 mm manufactured from alder (Alnus glutinosa subsp. barbata) and beech (Fagus orientalis Lipsky) logs were used as materials in this study. Veneer sheets were oven-dried in a veneer dryer at 110 °C (normal drying temperature) and 180 °C (high drying temperature) after peeling process. The surfaces of some veneers were then exposed at indoor laboratory conditions to obtain inactive wood surfaces for glue bonds, and some veneers were treated with borax, boric acid and ammonium acetate solutions. After these treatments, surface roughness and colour measurements were made on veneer surfaces. High temperature drying process caused a darkening on the surfaces of alder and beech veneers. Total colour change value (ΔE*) increased linear with increasing exposure time. Among the treatment solutions, ammonium acetate caused the biggest colour change while treatment with borax caused the lowest changes in ΔE* values. Considerable changes in surface roughness after preservative treatment did not occur on veneer surfaces. Generally, no clear changes were obtained or the values mean roughness profile (Ra) decreased slightly in Ra values after the natural inactivation process.  相似文献   

12.
Yttria-stabilized zirconia (YSZ) buffer layers were deposited on CeO2 buffered biaxially textured Ni-W substrate by reel-to-reel pulsed laser deposition (PLD) for the application of YBa2Cu3O7−δ (YBCO) coated conductor and the influence of substrate temperature and laser energy on their crystallinity and microstructure were studied. YSZ thin films were prepared with substrate temperature ranging from 600 to 800 °C and laser energy ranging from 120 to 350 mJ. X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate how thin film structure and surface morphology depend on these parameters. It was found that the YSZ films grown at substrate temperature below 600 °C or laser energy above 300 mJ showed amorphous phase, the (0 0 1) preferred orientation and the crystallinity of the YSZ films were improved with increasing the temperature, but the surface roughness increased simultaneously, the SEM images of YSZ films on CeO2/NiW tapes showed surface morphologies without micro-cracks. Based on these results, we developed the epitaxial PLD-YSZ buffer layer process at the tape transfer speed of 3-4 m/h by the reel-to-reel system for 100 m class long YBCO tapes.  相似文献   

13.
The influence of substrate temperature on structural and dielectric properties of cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 (BZN) thin films prepared by pulsed laser deposition process has been investigated. BZN thin films were deposited on Pt/Ti/SiO2/Si(1 0 0) substrate and in situ annealed at 700 °C. The results indicate that the substrate temperature has a significant effect on the structural and dielectric properties of BZN thin films. The films exhibit a cubic pyrochlore structure in the substrate temperature range from 550 °C to 700 °C and at the annealing temperature of 700 °C. With further increase of substrate temperature to 750 °C, the phases of Bi2O3, BiNbO4 and Bi5Nb3O15 can be detected in the XRD pattern due to the Zn loss. The dielectric constant and loss tangent of the films deposited at 650 °C are 192 and 6 × 10−4 at 10 kHz, respectively. The tunability is 10% at a dc bias field of 0.9 MV/cm.  相似文献   

14.
The present paper investigates the surface roughness generated by reactive ion etching (RIE) on the location between silicon dioxide (SiO2) micro-pits structures. The micro-pit pattern on polymethyl methacrylate (PMMA) mask was created by an electron beam lithography tool. By using PMMA as a polymer resist mask layer for pattern transfer in RIE process, the carbon (C) content in etching process is increased, which leads to decrease of F/C ratio and causes domination of polymerization reactions. This leads to high surface roughness via self-organized nanostructure features generated on SiO2 surface which was analyzed using atomic force microscopy (AFM) technique. The etching chemistry of CHF3 plasma on PMMA masking layer and SiO2 is analyzed to explain the polymerization. The surface root-mean-square (RMS) roughness below 1 nm was achieved by decreasing the RF power to 150 W and process pressure lower than 10 mTorr.  相似文献   

15.
Zn1−xCoxO thin films with c-axis preferred orientation were deposited on sapphire (0 0 0 1) by pulsed laser deposition (PLD) technique at different substrate temperatures in an oxygen-deficient ambient. The effect of substrate temperature on the microstructure, morphology and the optical properties of the Zn1−xCoxO thin films was studied by means of X-ray diffraction (XRD), atomic force microscopy (AFM), UV-visible-NIR spectrophotometer, fluorescence spectrophotometer. The results showed that the crystallization of the films was promoted as substrate temperature rose. The structure of the samples was not distorted by the Co incorporating into ZnO lattice. The surface roughness of all samples decreased as substrate temperature increased. The Co concentration in the film was higher than in the target. Emission peak near band edge emission of ZnO from the PL spectra of the all samples was quenched because the dopant complexes acted as non-radiative centers. While three emission bands located at 409 nm (3.03 eV), 496 nm (2.5 eV) and 513 nm (2.4 eV) were, respectively, observed from the PL spectra of the four samples. The three emission bands were in relation to Zn interstitials, Zn vacancies and the complex of VO and Zni (VOZni). The quantity of the Zn interstitials maintained invariable basically, while the quantity of the VOZni slightly decreased as substrate temperature increased.  相似文献   

16.
In this work the optical and the gas sensing properties of thick TiO2 waveguide films, produced by pulsed laser deposition, were investigated by m-line spectroscopy. The films were deposited on (0 0 1) SiO2 substrates at temperature of 100 °C. The thickness of the films was measured to be in the range from 650 to 1900 nm and the roughness increases from 5 to 14.6 nm. High quality mode spectra, consisted of thin and bright TE and TM modes, were observed in the films with thickness up to 1200 nm. All the films revealed anisotropic optical properties. Gas sensitivity of the films to CO2 was examined at room temperature on the basis of the variations of the refractive index. CO2 concentration of 3 × 104 ppm was detected, which corresponds to a refractive index variation of about 1 × 10−4. The crystal structure and the optical transmittance of the films were also presented and discussed.  相似文献   

17.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser for applications in dye-sensitized solar cells (DSSCs). The films were deposited on SiO2 substrates either at room temperatures (RT) or heated to 200-400 °C. Under optimized conditions, transmission of ITO films in the visible (vis) range was above 89% for films produced at RT and 93% for the ones deposited at higher temperatures. Increasing the substrate temperature from RT to 400 °C enhances the transmission of TiO2 films in the vis-NIR from about 70% to 92%. High transmission (≈90%) was observed for the double layer ITO/TiO2 with a transmission cut-off above 900 nm. From the transmission data, the energies gaps (Eg), as well as the refractive indexes (n) for the films were estimated. n ≈ 2.03 and 2.04, respectively for ITO films and TiO2 film deposited at 400 °C in the visible region. Post-annealing of the TiO2 films for 3 h at 300 and 500 °C was performed to enhance n. The refractive index of the TiO2 films increases with the post-annealing temperature. The direct band gap is 3.6, 3.74 and 3.82 eV for ITO films deposited at RT, 200, and 400 °C, respectively. The TiO2 films present a direct band gap of 3.51 and 3.37 eV for as deposited TiO2 films and when annealed at 400 °C, respectively. There is a shift of about 0.1 eV between ITO and ITO/TiO2 films deposited at 200 °C. The shift decreases by half when the TiO2 film was deposited at 400 °C. Post-annealing was also performed on double layer ITO/TiO2.  相似文献   

18.
We report a successful fabrication of c-axis oriented GdBa2Cu3O7−δ (GdBCO) films on the BaSnO3 (BSO) buffer layers on ion-beam assisted deposition (IBAD)-MgO template by pulsed-laser deposition (PLD). The (0 0 l) growth and in-plane textures of BSO buffer layers were found sensitive to the substrate temperature (Ts). With increasing the BSO layer thickness up to ∼165 nm, in-plane texture (Δ? ∼ 6.2°) of BSO layers was almost unaltered while completely c-axis oriented BSO layers were obtainable from samples with the thickness below ∼45 nm. On the BSO buffer layers showing in-plane texture of 6.2° and RMS surface roughness of ∼8.6 nm, GdBCO films were deposited at 780–800 °C. All GdBCO films exhibited Δ? values of 4.6–4.7°, Tc,zero of ∼91 K, and critical current density (Jc) over 1 MA/cm2 at 77 K in a self-field. The highest Jc value of 1.82 MA/cm2 (Ic of 51 A/cm-width) was achieved from the GdBCO film deposited at Ts of 790 °C. These results support that BSO can be a promising buffer layer on the IBAD-MgO template for obtaining high-Jc GdBCO coated conductors.  相似文献   

19.
TiO2 μ-donuts have been fabricated on glass and silicon substrates using polymer masks in combination with a sol-gel technique. Cylindrical poly(methyl methacrylate) (PMMA) nanopillars have been created using a composite polymer of polystyrene (PS) and PMMA followed by careful removal of the PS. Atomic force microscopy (AFM) analyses show that the height and diameter of the PMMA cylinders used as the mask are 440 ± 5 nm and 2.1 ± 0.2 μm, respectively. The cylindrical PMMA nanopillars have been coated with the sol of the TiO2 precursor by a spin coating technique and annealed in air at elevated temperature to remove the PMMA mask. Removal of the PMMA mask has resulted in the formation of well ordered μ-donuts of TiO2 on silicon surfaces. The interior and exterior heights of the TiO2 μ-donuts are found to be 373 ± 152 nm and 457 ± 136 nm, respectively; and the interior and exterior diameters of the TiO2 μ-donuts are found to be 1.33 ± 0.63 μm and 2.82 ± 0.50 μm, respectively. X-ray photoelectron spectroscopy (XPS) spectra of the TiO2 μ-donuts as well as the smooth TiO2 thin film showed signals from Ti and O confirming the presence of TiO2 with Ti 2p3/2 and O 1s peaks at 458.8 eV and 530.4 eV, respectively. The O 1s peak of the TiO2 μ-donuts shows another peak at binding energy 532.0 eV due to SiO2, as during annealing, the PMMA evaporates and the Si substrate is exposed. The X-ray diffractometer (XRD) pattern of the smooth TiO2 thin film indicates that the anatase phase is present, with the characteristic peaks observed at 2θ values of 25.4°, 37.4°, and 48° corresponding to (1 0 1), (0 0 4), and (2 0 0) planes, respectively. UV-vis absorption spectra of TiO2 μ-donuts on glass showed an unusual absorption of light in the visible region at ∼524 nm in addition to the usual UV absorption at ∼337 nm.  相似文献   

20.
This paper present the optimum conditions for direct CO2 laser cutting of 6-mm-thick polymethylmethacrylate (PMMA) for backlit module applications. The influence of the major processing parameters on the optical transmittance ratio and surface roughness of cut samples material have been discussed. In order to assess the effects of several operational parameters on multiple-performance characteristics, we applied the grey relational analysis method. In this paper, we studied the effects of several laser direct cut parameters, such as assisted gas-flow rate, pulse repetition frequency, cutting speed, and focus position to achieve optimum characteristics for two product characteristics, optical transmittance ratio and work-piece surface roughness. The study involved nine experiments based on an orthogonal array, and results indicate the optimal process parameters as 20 NL/min for assisted-gas flow rate, 5 kHz for pulse repetition frequency, 2 mm/s for cutting speed, and 0 mm for laser focusing position. Additionally, by analyzing the grey relational grade, we found that the assisted-gas flow rate has more influence than any other single parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号