首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygenation of sulfides to the corresponding sulfoxides by a distinct bis(mu-oxo)dicopper(III) complex has been accomplished for the first time using 2-(2-pyridyl)ethylamine derivative L(Py1Bz) (N-ethyl-N-[2-(2-pyridyl)ethyl]-alpha,alpha-dideuteriobenzylamine) as the supporting ligand. Detailed kinetic analysis has indicated that the reaction consists of two distinct steps, where the first quick process is association of the substrate to the bis(mu-oxo)dicopper(III) complex (k(1)) and the second slow process is intramolecular oxygen atom transfer from the copper-oxo species to the substrate in the associated complex (k(2)). The rate constant k(2) of the second process is rather insensitive to the oxidation potential of the substrates, suggesting that the oxo-transfer reaction proceeds via a mechanism involving direct oxygen atom transfer rather than a mechanism involving electron transfer.  相似文献   

2.
Bis(mu-oxo)dinickel(III) complexes supported by a series of bis[2-(2-pyridyl)ethyl]amine ligands have been successfully generated by treating the corresponding bis(mu-hydroxo)dinickel(II) complexes or bis(mu-methoxo)dinickel(II) complex with an equimolar amount of H(2)O(2) in acetone at low temperature. The bis(mu-oxo)dinickel(III) complexes exhibit a characteristic UV-vis absorption band at approximately 410 nm and a resonance Raman band at 600-610 cm(-1) that shifted to 570-580 cm(-1) upon (18)O-substitution. Kinetic studies and isotope labeling experiments using (18)O(2) imply the existence of intermediate(s) such as peroxo dinickel(II) in the course of formation of the bis(mu-oxo)dinickel(III) complex. The bis(mu-oxo)dinickel(III) complexes supported by the mononucleating ligands (L1(X) = para-substituted N,N-bis[2-(2-pyridyl)ethyl]-2-phenylethylamine; X = OMe, Me, H, Cl) gradually decompose, leading to benzylic hydroxylation of the ligand side arm (phenethyl group). The kinetics of the ligand hydroxylation process including kinetic deuterium isotope effects (KIE), p-substituent effects (Hammett plot), and activation parameters (Delta H(H)(*) and Delta S(H)(*)) indicate that the bis(muxo)dinickel(III) complex exhibits an ability of hydrogen atom abstraction from the substrate moiety as in the case of the bis(mu-oxo)dicopper(III) complex. Such a reactivity of bis(mu-oxo)dinickel(III) complexes has also been suggested by the observed reactivity toward external substrates such as phenol derivatives and 1,4-cyclohexadiene. The thermal stability of the bis(mu-oxo)dinickel(III) complex is significantly enhanced when the dinucleating ligand with a longer alkyl strap is adopted instead of the mononucleating ligand. In the m-xylyl ligand system, no aromatic ligand hydroxylation occurred, showing a sharp contrast with the reactivity of the (mu-eta(2):eta(2)-peroxo)dicopper(II) complex with the same ligand which induces aromatic ligand hydroxylation via an electrophilic aromatic substitution mechanism. Differences in the structure and reactivity of the active oxygen complexes between the nickel and the copper systems are discussed on the basis of the detailed comparison of these two systems with the same ligand.  相似文献   

3.
A new sterically hindered tetradentate tripodal ligand (Me2-etpy) and its labeled analogue having deuterated methylene groups (d4-Me2-etpy) were synthesized, where Me2-etpy is bis(6-methyl-2-pyridylmethyl)(2-pyridylethyl)amine. Copper(I) complexes [Cu(Me2-etpy or d4-Me2-etpy)]+ (1 and 1-d4, respectively) reacted with dioxygen at -80 degrees C in acetone to give bis(mu-oxo)dicopper(III) complexes [Cu2(O)2(Me2-etpy or d4-Me2-etpy)2](2+) (1-oxo and 1-d4-oxo, respectively), the latter of which was crystallographically characterized. Unlike a bis(mu-oxo)dicopper(III) complex with a closely related Me2-tpa ligand having a 2-pyridylmethyl pendant, 1-oxo possessing a 2-pyridylethyl pendant is not fully formed even under 1 atm of O2 at -80 degrees C and is very reactive toward the oxidation of the supporting ligand. Thermal decomposition of 1-oxo gave an N-dealkylated ligand in yield approximately 80% based on a dimer and a corresponding aldehyde. The deuterated ligand d4-Me2-etpy greatly stabilizes the bis(mu-oxo)dicopper(III) complex 1-d4-oxo, indicating that the rate determining step of the N-dealkylation is the C-H bond cleavage from the methylene group. The reversible conversion between 1-d4 and 1-d4-oxo in acetone is dependent on the temperature, and the thermodynamic parameters (DeltaH and DeltaS) of the equilibrium were determined to be -53 +/- 2 kJ mol(-1) and -187 +/- 10 J mol(-1) K(-1), respectively. The effect of the 2-pyridylethyl pendant in comparison with the 2-pyridylmethyl and 6-methyl-2-pyridylmethyl pendants on the physicochemical properties of the copper(I) and bis(mu-oxo)dicopper(III) species is discussed.  相似文献   

4.
The first systematic studies on the oxidation of neutral phenols (ArOH) by the mu-eta(2):eta(2)-peroxo)dicopper(II) complex (A) and the bis(mu-oxo)dicopper(III) complex (B) supported by the 2-(2-pyridyl)ethylamine tridentate and didentate ligands L(Py2) and L(Py1), respectively, have been carried out in order to get insight into the phenolic O-H bond activation mechanism by metal-oxo species. In both cases (A and B), the C-C coupling dimer was obtained as a solely isolable product in approximately 50% yield base on the dicopper-dioxygen (Cu(2)/O(2)) complexes, suggesting that both A and B act as electron-transfer oxidants for the phenol oxidation. The rate-dependence in the oxidation of phenols by the Cu(2)/O(2) complexes on the one-electron oxidation potentials of the phenol substrates as well as the kinetic deuterium isotope effects obtained using ArOD have indicated that the reaction involves a proton-coupled electron transfer (PCET) mechanism. The reactivity of phenols for net hydrogen atom transfer reactions to cumylperoxyl radical (C) has also been investigated to demonstrate that the rate-dependence of the reaction on the one-electron oxidation potentials of the phenols is significantly smaller than that of the reaction with the Cu(2)O(2) complexes, indicative of the direct hydrogen atom transfer mechanism (HAT). Thus, the results unambiguously confirmed that the oxidation of phenols by the Cu(2)O(2) complex proceeds via the PCET mechanism rather than the HAT mechanism involved in the cumylperoxyl radical system. The reactivity difference between A and B has also been discussed by taking account of the existed fast equilibrium between A and B.  相似文献   

5.
Osako T  Ueno Y  Tachi Y  Itoh S 《Inorganic chemistry》2003,42(24):8087-8097
Ligand effects on the structures and redox reactivities of copper complexes have been examined using (2-pyridyl)alkylamine derivatives as the supporting ligands, where particular attention has been focused on the effects of the alkyl linker chain length connecting the tertiary amine nitrogen atom and the pyridine nucleus: N[bond]CH(2)[bond]Py (Pym) vs N[bond]CH(2)CH(2)[bond]Py (Pye). X-ray crystallographic analysis of the copper(I) complex of tridentate ligand (Phe)L(Pym2) [N,N-di(2-pyridylmethyl)-2-phenylethylamine] (complex 1) has demonstrated that it possesses a trigonal pyramidal geometry in which a d[bond]pi interaction with an eta(1)-binding mode exists between the metal ion and one of the ortho carbons of the phenyl ring of the ligand side arm (phenethyl). The result shows sharp contrast to the d[bond]pi interaction with an eta(2)-binding mode existing in the copper(I) complex of (Phe)L(Pye2) [N,N-di[2-(2-pyridyl)ethyl]-2-phenethylamine] (complex 2). Such a d-pi interaction has been shown to affect the stability of the copper(I) complex in CH(2)Cl(2). Oxygenation of copper(I) complex 1 supported by (Phe)L(Pym2) produces a bis(mu-oxo)dicopper(III) complex, also being in sharp contrast to the case of the copper(I) complex 2 with ligand (Phe)L(Pye2), which preferentially affords a (micro-eta(2):eta(2)-peroxo)dicopper(II) complex in the reaction with O(2). Such an effect of the alkyl linker chain length of the metal binding site has also been found to operate in the RSSR (disulfide)/2RS(-) (thiolate) redox system. Namely, ligand (S2,R)L(Pym1) (di[2-[(alkyl)(2-pyridinylmethyl)amino]ethyl] disulfide) with the methylene linker group (Pym) induced the reductive disulfide bond cleavage in the reaction with copper(I) ion to give a bis(micro-thiolato)dicopper(II) complex, while the ligand with the ethylene linker group (Pye), (S2,Bn)L(Pye1) (di[2-[(benzyl)(2-(2-pyridinyl)ethyl)amino]ethyl] disulfide), gave a disulfide-dicopper(I) complex. These ligand effects in the Cu(2)[bond]O(2) and Cu(2)[bond]S(2) systems have been discussed by taking into account the difference in electron-donor ability of the pyridine nucleus between the Pym and Pye ligand systems.  相似文献   

6.
Oxygenation of [Cu(I)(6-PhTPA)](SbF(6)) in acetone at -90 degrees C produces a short-lived Cu(III)(2)(mu-O)(2) intermediate that exhibits an oxygen-isotope-sensitive nu(Cu-O) mode at 599 cm(-1) and an overtone at 1192 cm(-1). The formation of this intermediate is very fast and is second-order in copper(I) complex, implying that two copper-containing species interact in the rate-limiting step or in pre-equilibrium steps prior to the rate determining step. The decay of this intermediate was facile even at -90 degrees C but did not afford any arene hydroxylation product. Interestingly, the effect of introducing a 6-phenyl substituent on the TPA ligand framework differs from that of a 6-methyl substituent, providing access to a bis(mu-oxo)dicopper(III) intermediate in the former and a (mu-1,2-peroxo)dicopper(II) species in the latter.  相似文献   

7.
Methane hydroxylation at the mononuclear and dinuclear copper sites of pMMO is discussed using quantum mechanical and QM/MM calculations. Possible mechanisms are proposed with respect to the formation of reactive copper-oxo and how they activate methane. Dioxygen is incorporated into the Cu(I) species to give a Cu(II)-superoxo species, followed by an H-atom transfer from a tyrosine residue near the monocopper active site. A resultant Cu(II)-hydroperoxo species is next transformed into a Cu(III)-oxo species and a water molecule by the abstraction of an H-atom from another tyrosine residue. This process is accessible in energy under physiological conditions. Dioxygen is also incorporated into the dicopper site to form a (mu-eta(2):eta(2)-peroxo)dicopper species, which is then transformed into a bis(mu-oxo)dicopper species. The formation of this species is more favorable in energy than that of the monocopper-oxo species. The reactivity of the Cu(III)-oxo species is sufficient for the conversion of methane to methanol if it is formed in the protein environment. Since the sigma orbital localized in the Cu-O bond region is singly occupied in the triplet state, this orbital plays a role in the homolytic cleavage of a C-H bond of methane. The reactivity of the bis(mu-oxo)dicopper species is also sufficient for the conversion of methane to methanol. The mixed-valent bis(mu-oxo)Cu(II)Cu(III) species is reactive to methane because the amplitude of the sigma singly occupied MO localized on the bridging oxo moieties plays an essential role in C-H activation.  相似文献   

8.
The preference for the formation of a particular Cu 2O 2 isomer coming from (ligand)-Cu (I)/O 2 reactivity can be regulated with the steric demands of a TMPA (tris(2-pyridylmethyl)amine) derived ligand possessing 6-pyridyl substituents on one of the three donor groups of the tripodal tetradentate ligand. When this substituent is an -XHR group (X = N or C) the traditional Cu (I)/O 2 adduct forms a (mu-1,2)peroxodicopper(II) species ( A). However, when the substituent is the slightly bulkier XR 2 moiety {aryl or NR 2 (R not equal H)}, a bis(mu-oxo)dicopper(III) structure ( C) is favored. The reactivity of one of the bis(mu-oxo)dicopper(III) species, [{(6tbp)Cu (III)} 2(O (2-)) 2] (2+) ( 7-O 2 ) (6tbp = (6- (t)Bu-phenyl-2-pyridylmethyl)bis(2-pyridylmethyl)amine), was probed, and for the first time, exogenous toluene or ethylbenzene hydrocarbon oxygenation reactions were observed. Typical monooxygenase chemistry occurred: the benzaldehyde product includes an 18-O atom for toluene/ 7- (1) (8)O 2 reactivity, and a H-atom abstraction by 7-O 2 is apparent from study of its reactions with ArOH substrates, as well as the determination of k H/ k D approximately 7 in the toluene oxygenation (i.e., PhCH 3 vs PhCD 3 substrates). Proposed courses of reaction are presented, including the possible involvement of PhCH 2OO (*) and its subsequent reaction with copper(I) complex, the latter derived from dynamic solution behavior of 7-O 2 . External TMPA ligand exchange for copper in 7-O 2 and O-O bond (re)formation chemistry, along with the ability to protonate 7-O 2 and release of H 2O 2 indicate the presence of an equilibrium between [{(6tbp)Cu (III)} 2(O (2-)) 2] (2+) ( 7-O 2 ) and a (mu-1,2)peroxodicopper(II) form.  相似文献   

9.
The structure and dioxygen-reactivity of copper(I) complexes R supported by N,N-bis(6-methylpyridin-2-ylmethyl)amine tridentate ligands L2R[R (N-alkyl substituent)=-CH2Ph (Bn), -CH2CH2Ph (Phe) and -CH2CHPh2(PhePh)] have been examined and compared with those of copper(I) complex (Phe) of N,N-bis[2-(pyridin-2-yl)ethyl]amine tridentate ligand L1(Phe) and copper(I) complex (Phe) of N,N-bis(pyridin-2-ylmethyl)amine tridentate ligand L3(Phe). Copper(I) complexes (Phe) and (PhePh) exhibited a distorted trigonal pyramidal structure involving a d-pi interaction with an eta1-binding mode between the metal ion and one of the ortho-carbon atoms of the phenyl group of the N-alkyl substituent [-CH2CH2Ph (Phe) and -CH2CHPh2(PhePh)]. The strength of the d-pi interaction in (Phe) and (PhePh) was weaker than that of the d-pi interaction with an eta2-binding mode in (Phe) but stronger than that of the eta1 d-pi interaction in (Phe). Existence of a weak d-pi interaction in (Bn) in solution was also explored, but its binding mode was not clear. Redox potentials of the copper(I) complexes (E1/2) were also affected by the supporting ligand; the order of E1/2 was Phe>R>Phe. Thus, the order of electron-donor ability of the ligand is L1Phe相似文献   

10.
The variation of ligand para substituents on pyridyl donor groups of tridentate amine copper(I) complexes was carried out in order to probe electronic effects on the equilibrium between mu-eta2:eta2-(side-on)-peroxo [Cu(II)2(O2(2-))]2+ and bis(mu-oxo) [Cu(III)2(O(2-))2] species formed upon reaction with O2. [Cu(I)(R-PYAN)(MeCN)n]B(C6F5)4 (R-PYAN = N-[2-(4-R-pyridin-2-yl)-ethyl]-N,N',N'-trimethyl-propane-1,3-diamine, R = NMe2, OMe, H, and Cl) (1R) vary over a narrow range in their Cu(II)/Cu(I) redox potentials (E(1/2) vs Fe(cp)2(+/0) = -0.40 V for 1(NMe2), -0.38 V for 1(OMe), -0.33 V for 1H, and -0.32 V for 1Cl) and in C-O stretching frequencies of their carbonyl adducts, 1R-CO: nu(C-O) = 2080, 2086, 2088, and 2090 cm(-1) for R = NMe2, OMe, H, and Cl, respectively. However, within this range of electronic properties for 1R, dioxygen reactivity is significantly affected. The reaction of 1Cl or 1H with O2 at -78 degrees C in CH2Cl2 gives UV-vis and resonance Raman spectra indicative of a mu-eta2:eta2-(side-on)-peroxo dicopper(II) adduct (2R). Compound 1(OMe) reacts with O2, yielding equilibrium mixtures of side-on peroxo (2(OMe)) and bis(mu-oxo) (3(OMe)) species. Oxygenation of 1(NMe2) leads to the sole generation of the bis(mu-oxo) dicopper(III) complex (3(NMe2)). A solvent effect was also observed; in acetone or THF, increased ratios of bis(mu-oxo) relative to side-on peroxo complex are observed. Thus, the equilibrium between a dicopper side-on peroxo and bis(mu-oxo) species can be tuned by ligand design-specifically, more electron donating ligands favor the formation of the latter isomer, and the peroxo/bis(mu-oxo) equilibrium can be shifted from one extreme to the other within the same ligand system. Observations concerning the reactivity of the dioxygen adducts 2H and 3(NMe2) toward external substrates are also presented.  相似文献   

11.
A series of copper(I) complexes with a sterically hindered, bidentate ligand, BL iPr, derived from an N-heterocyclic carbene precursor have been isolated, characterized and their reactivity studied. The ethylene-bridged bis(imidazolin-2-imine) ligand (BL iPr) provides strongly donating N-donor atoms for the stabilization of a copper(I) metal center, priming it for reactivity. The complexes [(BL iPr)Cu(XyNC)]PF6 (4) and [(BL iPr)CuCl] (5) were characterized by X-ray crystallography and exhibit trigonal coordination at the copper centers. The reactivity of [(BL iPr)Cu]SbF6 toward dioxygen was studied at low temperature, indicating formation of a thermally sensitive intermediate with intense UV/Vis features and an isotope-sensitive vibration at 625 cm(-1) (599 cm(-1) with 18 O2). The intermediate is assigned as containing the bis(mu-oxo)dicopper(III) core, [2](PF6)2, and the related, stable hydroxo form was crystallized as [{(BL iPr)Cu}2(mu-OH)2](PF6)2, [3](PF6)2. The reactivity of 5 as a catalyst for the ATR polymerization of styrene was assessed in terms of reaction kinetics and polymer properties, with low PDI values achieved for polymers with molecular weights up to 30 000 g mol(-1).  相似文献   

12.
A disulfide-bridged dicopper(I) complex, [Cu2(Py2SSPy2)](ClO4)2 (1) (Py2SSPy2 = bis(2-[N,N-bis(2-pyridylethyl)-amino]-1,1- dimethylethyl)disulfide), a thioether-copper(I) complex, [Cu(iPrSPy2)](ClO4) (2) (iPrSPy2 = N-(2-isopropylthio-2-methyl)propyl-N,N-bis-2-(2-pyridyl)ethylamine, and a thioether-copper(II) complex, [Cu-(PheSPy2)(H2O)](ClO4)2 (3) (PheSPy2 = N-(2-methyl-2-phenethylthio)propyl-N,N-bis-2-(2- pyridyl)ethylamine), were newly synthesized by the reactions of Cu(ClO4)2.6H2O with a thiol ligand of Py2SH (N,N-bis[2-(2-pyridyl)-ethyl]-1,1-dimethyl-2- mercaptoethylamine) and thioether ligands of iPrSPy2 and PheSPy2, respectively. For complexes 1 and 2, X-ray analyses were performed. Complex 1 crystallizes in the triclinic space group P1, and complex 2 crystallizes in the orthorhombic space group Pbca with the following unit cell parameters: for 1, a = 15.165 (3) A, b = 22.185 (4) A, c = 14.989 (3) A, alpha = 105.76 (1) degrees, beta = 90.82 (2) degrees, gamma = 75.23 (1) degrees, and Z = 2; for 2, a = 17.78 (2) A, b = 17.70 (1) A, c = 15.75 (1) A, and Z = 8. Complex 1 is the first structurally characterized example obtained by the redox reaction Cu(II) + RSH-->Cu(I) + RSSR and has two independent structures (1a, 1b) which mainly differ in S-S bond distances, Cu(I)...Cu(I) separations, and C-S-S-C dihedral angles of the disulfide units. The S-S bond distances of 2.088(7) A in 1a and 2.070(7) A in 1b are indicative of significant activation of the S-S bonds by the dicopper centers. Fragment molecular orbital (FMO) analyses and molecular orbital overlap population (MOOP) analyses based on the extended Hückel method clarify the preferable formation of the disulfide S-S bond in 1 rather than the formation of a thiolate-copper(II) complex within the Py2S- ligand framework. Catalytic functions of complexes 1-3 were investigated with peroxides (H2O2 and tBuOOH) as oxidants. Complex 1 catalyzed the selective oxidation of cyclohexane to cyclohexanol and mediated the cyclohexene epoxidation in the presence of H2O2. A transient dark green intermediate observed in the reaction of 1 with H2O2 is characterized by UV-vis, EPR, and resonance Raman spectroscopies, identifying it as a Cu(II)-OOH species, 1(OOH). The resonance Raman features of the nu(O-O) bands at 822 and 836 cm-1, which are red-shifted to 781 and 791 cm-1, respectively, upon introduction of H2(18)O2, are indicative of formation of two kinds of Cu-OOH species rather than the Fermi doublet and the significant weakening of the O-O bonds. These mechanistic studies demonstrate that by virtue of the electron-donating ability of the disulfide unit the Cu-OOH species can be actually activated for one-electron oxidation, which has been reported so far unfavorable for other vibrationally characterized Cu-OOH species.  相似文献   

13.
Six Cu(I) complexes with cis,cis-1,3,5-triaminocyclohexane derivatives (R3CY, R = Et, iBu, and Bn), [Cu(MeCN)(Et3CY)]SbF6 (1), [Cu(MeCN)(iBu3CY)]SbF6 (2), [Cu(MeCN)(Bn3CY)]SbF6 (3), [Cu(CO)(Et3CY)]SbF6 (4), [Cu(CO)(iBu3CY)]SbF6 (5), and [Cu(CO)(Bn3CY)]SbF6 (6), were prepared to probe the ability of copper complexes to effectively catalyze oxygenation reactions. The complexes were characterized by elemental analysis, electrochemical and X-ray structure analyses, electronic absorption spectroscopy, IR spectroscopy, 1H NMR spectroscopy, and ESI mass spectrometry. The crystal structures of 1-3 and 6 and the CO stretching vibrations (nuCO) of 4-6 demonstrate that the ability of R3CY to donate electron density to the Cu(I) atom is stronger than that of the previously reported ligands, 1,4,7-triazacyclononane (R3TACN) and 1,4,7-triazacyclodecane (R3TACD). Reactions of complexes 1-3 with dioxygen in THF or CH2Cl2 at -105 to -80 degrees C yield bis(mu-oxo)dicopper(III) complexes 7-9 as intermediates as confirmed by electronic absorption spectroscopy and resonance Raman spectroscopy. The Cu-O stretching vibrations, nu(Cu-O) for 7 (16O2: 553, 581 cm-1and 18O2: 547 cm-1) and 8 (16O2: 571 cm-1 and 18O2: 544 cm-1), are observed in a lower energy region than previously reported for bis(micro-oxo) complexes. The decomposition rates of complexes 7-9 in THF at -90 degrees C are 2.78 x 10-4 for 7, 8.04 x 10-4 for 8, and 3.80 x 10-4 s-1 for 9. The decomposition rates of 7 and 8 in CH2Cl2 were 5.62 x 10-4 and 1.62 x 10-3 s-1, respectively, and the thermal stabilities of 7-9 in CH2Cl2 are lower than the values measured for the complexes in THF. The decomposition reactions obeyed first-order kinetics, and the H/D isotope experiments for 8 and 9 indicate that the N-dealkylation reaction is the rate-determining step in the decomposition processes. On the other hand, the decomposition reaction of 7 in THF results in the oxidation of THF (acting as an exogenous substrate) to give 2-hydroxy tetrahydrofuran and gamma-butyrolactone as oxidation products. Detailed investigation of the N-dealkylation reaction for 8 by kinetic experiments using N-H/D at -90 degrees C showed a kinetic isotope effect of 1.25, indicating that a weak electrostatic interaction between the N-H hydrogen and mu-oxo oxygen contributes to the major effect on the rate-determining step of N-dealkylation. X-ray crystal structures of the bis(micro-hydroxo)dicopper(II) complexes, [Cu2(OH)2(Et3CY)2](CF3SO3)2 (10), [Cu2(OH)2(iBu3CY)2](CF3SO3)2 (11), and [Cu2(OH)2(Bn3CY)2](ClO4)2 (12), which have independently been prepared as the final products of bis(micro-oxo)dicopper(III) intermediates, suggest that an effective interaction between N-H and mu-oxo in the Cu(III)2(micro-O)2 core may enhance the oxidation ability of the metal-oxo species.  相似文献   

14.
By using molecular oxygen bis(μ-oxo)dicopper(III) complexes can be produced from Cu(I) complexes with ligand L(X) (L(X)=p-substituted N-ethyl-N-[2-(2-pyridyl)ethyl]-2-phenylethylamine; X=OMe, Me, H, Cl, NO(2)) in which the benzylic position of the ligand is activated and hydroxylated by the Cu(2)O(2) core (see reaction scheme). Detailed characterization of this new C-H bond activation reaction by the bis(μ-oxo)dicopper(III) core reveals important information on the fundamental chemistry underlying copper monooxygenase reactivity.  相似文献   

15.
Ohtsu H  Tanaka K 《Inorganic chemistry》2004,43(9):3024-3030
Low-spin nickel(II) complexes containing bidentate ligands with modulated nitrogen donor ability, Py(Bz)2 or MePy(Bz)2 (Py(Bz)2 = N,N-bis(benzyl)-N-[(2-pyridyl)methyl]amine, MePy(Bz)2 = N,N-bis(benzyl)-N-[(6-methyl-2-pyridyl)methyl]amine), and a beta-diketonate derivative, tBuacacH (tBuacacH = 2,2,6,6-tetramethyl-3,5-heptanedione), represented as [Ni(Py(Bz)2)(tBuacac)](PF6) (1) and [Ni(MePy(Bz)2)(tBuacac)](PF6) (2) have been synthesized. In addition, the corresponding high-spin nickel(II) complexes having a nitrate ion, [Ni(Py(Bz)2)(tBuacac)(NO3)] (3) and [Ni(MePy(Bz)2)(tBuacac)(NO3)] (4), have also been synthesized for comparison. Complexes 1 and 2 have tetracoordinate low-spin square-planar structures, whereas the coordination environment of the nickel ion in 4 is a hexacoordinate high-spin octahedral geometry. The absorption spectra of low-spin complexes 1 and 2 in a noncoordinating solvent, dichloromethane (CH2Cl2), display the characteristic absorption bands at 500 and 540 nm, respectively. On the other hand, the spectra of a CH2Cl2 solution of high-spin complexes 3 and 4 exhibit the absorption bands centered at 610 and 620 nm, respectively. The absorption spectra of 1 and 2 in N,N-dimethylformamide (DMF), being a coordinating solvent, are quite different from those in CH2Cl2, which are nearly the same as those of 3 and 4 in CH2Cl2. This result indicates that the structures of 1 and 2 are converted from a low-spin square-planar to a high-spin octahedral configuration by the coordination of two DMF molecules to the nickel ion. Moreover, complex 1 shows thermochromic behavior resulting from the equilibrium between low-spin square-planar and high-spin octahedral structures in acetone, while complex 2 exists only as a high-spin octahedral configuration in acetone at any temperature. Such drastic differences in the binding constants and thermochromic properties can be ascribed to the enhancement of the acidity of the nickel ion of 2 by the steric effect of the o-methyl group in the MePy(Bz)2 ligand in 2, which weakens the Ni-N(pyridine) bond length compared with that of the nonsubstituted Py(Bz)2 ligand in 1.  相似文献   

16.
The structure and H(2)O(2)-reactivity of a series of copper(II) complexes supported by tris[(pyridin-2-yl)methyl]amine (TPA) derivatives having a phenyl group at the 6-position of pyridine donor group(s) [(6-phenylpyridin-2-yl)methyl]bis[(pyridin-2-yl)methyl]amine (Ph(1)TPA), bis[(6-phenylpyridin-2-yl)methyl][(pyridin-2-yl)methyl]amine (Ph(2)TPA), and tris[(6-phenylpyridin-2-yl)methyl]amine (Ph(3)TPA) have systematically been examined to get insights into the aromatic substituent (6-Ph) effects on the coordination chemistry of TPA ligand system. The X-ray crystallographic analyses have revealed that [Cu(II)(TPA)(CH(3)CN)](ClO(4))(2) (CuTPA) and [Cu(II)(Ph(3)TPA)(CH(3)CN)](ClO(4))(2) (3) exhibit a trigonal bipyramidal structure, whereas [Cu(II)(Ph(1)TPA)(CH(3)CN)](ClO(4))(2) (1) shows a slightly distorted square pyramidal structure and [Cu(II)(Ph(2)TPA)(CH(3)CN)](ClO(4))(2) (2) has an intermediate structure between trigonal bipyramidal and square pyramidal. On the other hand, the UV-vis and ESR data have suggested that all the copper(II) complexes have a similar trigonal bipyramidal structure in solution. The redox potentials of CuTPA, 1, 2, and 3 have been determined as E(1/2) = -0.34, -0.28, -0.16, and -0.04 mV vs Ag/AgNO(3), respectively, demonstrating that introduction of each 6-Ph group causes positive shift of E(1/2) about 0.1 V. Notable difference in H(2)O(2)-reactivity has been found among the copper(II) complexes. Namely, CuTPA and 1 afforded mononuclear copper(II)-hydroperoxo complexes CuTPA-OOH and 1-OOH, respectively, whereas complex 2 provided bis(mu-oxo)dicopper(III) complex 2-oxo. On the other hand, copper(II) complex 3 was reduced to the corresponding copper(I) complex 3(red). On the basis of the H(2)O(2)-reactivity together with the X-ray structures and the redox potentials of the copper(II) complexes, the substituent effects of 6-Ph are discussed in detail.  相似文献   

17.
Incorporation of a nitrogen functionality into a tripodal N-heterocyclic carbene ligand system affords the first N-anchored tetradentate tris-carbene ligands TIMEN(R) (R = Me (5a), t-Bu (5b), Bz (5c)). Treatment of the methyl derivatized [H(3)TIMEN(Me)](PF(6))(3) imidazolium salt (H(3)5a) with silver oxide yields the silver complex [(TIMEN(Me))(2)Ag(3)](PF(6))(3) (9), which, in a ligand transfer reaction, reacts with copper(I) bromide to give the trinuclear copper(I) complex [(TIMEN(Me))(2)Cu(3)](PF(6))(3) (10). Deprotonation of the tert-butyl and benzyl derivatives [H(3)TIMEN(t-Bu)](PF(6))(3) and [H(3)TIMEN(Bz)](PF(6))(3) yields the free tris-carbenes TIMEN(t-Bu) (5b) and TIMEN(Bz) (5c), which react readily with copper(I) salts to give mononuclear complexes [(TIMEN(t-Bu))Cu](PF(6)) (11b) and [(TIMEN(Bz))Cu]Br (11c). The solid-state structures of 10, 11b, and 11c were determined by single-crystal X-ray diffraction. While the TIMEN(Me) ligand yields trinuclear complex 10, with both T-shaped three-coordinate and linear two-coordinate copper(I) centers, the TIMEN(t-Bu) and TIMEN(Bz) ligands induce mononuclear complexes 11b and 11c, rendering the cuprous ion in a trigonal planar ligand environment of three carbenoid carbon centers and an additional, weak axial nitrogen interaction. Complexes 11b and 11c exhibit reversible one-electron redox events at half-wave potentials of 110 and -100 mV vs Fc/Fc(+), respectively, indicating sufficient electronic and structural flexibility of both TIMEN(R) ligands (R = t-Bu, Bz) to stabilize copper(I) and copper(II) oxidation states. Accordingly, a copper(II) NHC complex, [(TIMEN(Bz))Cu](OTf)(2) (12), was synthesized. Paramagnetic complex 12 was characterized by elemental analysis, EPR spectroscopy, and SQUID magnetization measurements.  相似文献   

18.
Low-temperature oxygenation of copper(I) complexes of N,N,N',N'-tetraethylpropane-1,3-diamine yields solutions containing both mu-eta2:eta2-peroxodicopper(II) (P) and bis(mu-oxo)dicopper(III) (O) valence isomers. The P/O equilibrium position depends on the nature of the counteranion; P is favored with more basic anions. Titration and EXAFS experiments as well as DFT calculations suggest that axial donation from a sulfonate anion to the copper centers imparts an electronic/electrostatic bias toward the P isomer.  相似文献   

19.
The activation of dioxygen by dopamine beta-monooxygenase (DbetaM) and peptidylglycine alpha-hydroxylating monooxygenase (PHM) is postulated to occur at a copper site ligated by two histidine imidazoles and a methionine thioether, which is unusual because such thioether ligation is not present in other O2-activating copper proteins. To assess the possible role of the thioether ligand in O2 activation by DbetaM and PHM, two new ligands comprising beta-diketiminates with thioether substituents were synthesized and Cu(I) and Cu(II) complexes were isolated. The Cu(II) compounds are monomeric and exhibit intramolecular thioether coordination. While the Cu(I) complexes exhibit a multinuclear topology in the solid state, variable-temperature 1H NMR studies implicate equilibria in solution, possibly including monomers with intramolecular thioether coordination that are structurally defined by DFT calculations. Low-temperature oxygenation of solutions of the Cu(I) complexes generates stable 1:1 Cu/O2 adducts, which on the basis of combined experimental and theoretical studies adopt side-on "eta(2)" structures with negligible Cu-thioether bonding and significant peroxo-Cu(III) character. In contrast to previously reported findings with related ligands lacking the thioether group, however (cf., Aboelella; et al. J. Am. Chem. Soc. 2004, 126, 16896), purging the solutions of the thioether-containing adducts with argon results in conversion to bis(mu-oxo)dicopper(III) species. A role for the thioether in promoting loss of O2 from the 1:1 Cu/O2 adduct and facilitating trapping of the resulting Cu(I) complex to yield the bis(mu-oxo) species is proposed, and the possible relevance of this role to that of the methionine in the active sites of DbetaM and PHM is discussed.  相似文献   

20.
Crystal structures of the copper(I) complexes 1(X), 2, and 3 of a series of tridentate ligands L1(X), L2, and L3, respectively (L1(X): p-substituted derivatives of N,N-bis[2-(2-pyridyl)ethyl]-2-phenylethylamine; X=H, Me, OMe, Cl, NO(2); L2: N,N-bis[2-(2-pyridyl)ethyl]-2-methyl-2-phenylethylamine; L3: N,N-bis[2-(2-pyridyl)ethyl]-2,2-diphenylethylamine) were solved to demonstrate that all the copper(I) complexes involve an eta(2) copper-arene interaction with the phenyl ring of the ligand sidearm. The Cu(I) ion in each complex has a distorted tetrahedral geometry consisting of the three nitrogen atoms (one tertiary amine nitrogen atom and two pyridine nitrogen atoms) and C(1)-C(2) of the phenyl ring of ligand sidearm, whereby the Cu-C distances of the copper-arene interaction significantly depend on the para substituents. The existence of the copper-arene interaction in a nonpolar organic solvent (CH(2)Cl(2)) was demonstrated by the observation of an intense MLCT band around 290 nm, and the magnitude of the interaction was evaluated by detailed analysis of the (1)H and (13)C NMR spectra and the redox potentials E(1/2) of the copper ion, as well as by means of the ligand-exchange reaction between the phenyl ring and CH(3)CN as an external ligand. The thermodynamic parameters DeltaH(o) and DeltaS(o) for the ligand-exchange reaction with CH(3)CN afforded a quantitative measure for the energy difference of the copper-arene interaction in the series of copper(I) complexes. Density functional studies indicated that the copper(I)-arene interaction mainly consists of the interaction between the d(z(2) ) orbital of Cu(I) and a pi orbital of the phenyl ring. The copper(I) complexes 1(X) reacted with O(2) at -80 degrees C in CH(2)Cl(2) to give the corresponding (micro-eta(2):eta(2)-peroxo)dicopper(II) complexes 4, the formation rates k(obs) of which were significantly retarded by stronger d-pi interaction, while complexes 2 and 3, which exhibit the strongest d-pi interaction showed significantly lower reactivity toward O(2) under the same experimental conditions. Thus, the d-pi interaction has been demonstrated for the first time to affect the copper(I)-dioxygen reactivity, and represents a new aspect of ligand effects in copper(I)-dioxygen chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号