首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have quantified the extent of the nonadditivity of the short-range exchange-repulsion energy, E(exch-rep), in several polycoordinated complexes of alkali, alkaline-earth, transition, and metal cations. This was done by performing ab initio energy decomposition analyses of interaction energies in these complexes. The magnitude of E(exch-rep(n-body, n > 2)) was found to be strongly cation-dependent, ranging from close to zero for some alkali metal complexes to about 6 kcal/mol for the hexahydrated Zn(2+) complex. In all cases, the cation-water molecules, E(exch-rep(three-body)), has been found to be the dominant contribution to many-body exchange-repulsion effects, higher order terms being negligible. As the physical basis of this effect is discussed, a three-center exponential term was introduced in the SIBFA (Sum of Interactions Between Fragments Ab initio computed) polarizable molecular mechanics procedure to model such effects. The three-body correction is added to the two-center (two-body) overlap-like formulation of the short-range repulsion contribution, E(rep), which is grounded on simplified integrals obtained from localized molecular orbital theory. The present term is computed on using mostly precomputed two-body terms and, therefore, does not increase significantly the computational cost of the method. It was shown to match closely E(three-body) in a series of test cases bearing on the complexes of Ca(2+), Zn(2+), and Hg(2+). For example, its introduction enabled to restore the correct tetrahedral versus square planar preference found from quantum chemistry calculations on the tetrahydrate of Hg(2+) and [Hg(H(2)O)(4)](2+).  相似文献   

2.
A correct representation of the short‐range contributions such as exchange‐repulsion (E rep) and charge‐transfer (E ct) is essential for the soundness of separable, anisotropic polarizable molecular mechanics potentials. Within the context of the SIBFA procedure, this is aimed at by explicit representations of lone pairs in their expressions. It is necessary to account for their anisotropic behaviors upon performing not only in‐plane, but also out‐of‐plane, variations of a probe molecule or cation interacting with a target molecule or molecular fragment. Thus, E rep and E ct have to reproduce satisfactorily the corresponding anisotropies of their quantum chemical (QC) counterparts. A significant improvement of the out‐of‐plane dependencies was enabled when the sp2 and sp localized lone‐pairs are, even though to a limited extent, delocalized on both sides of the plane, above and below the atom bearer but at the closely similar angles as the in‐plane lone pair. We report calibration and validation tests on a series of monoligated complexes of a probe Zn(II) cation with several biochemically relevant ligands. Validations are then performed on several polyligated Zn(II) complexes found in the recognition sites of Zn‐metalloproteins. Such calibrations and validations are extended to representative monoligated and polyligated complexes of Mg(II) and Ca(II). It is emphasized that the calibration of all three cations was for each ΔE contribution done on a small training set bearing on a limited number of representative N , O , and S monoligated complexes. Owing to the separable nature of ΔE , a secure transferability is enabled to a diversity of polyligated complexes. For these the relative errors with respect to the target ΔE (QC) values are generally < 3%. Overall, the article proposes a full set of benchmarks that could be useful for force field developers. © 2017 Wiley Periodicals, Inc.  相似文献   

3.
Using the polarizable molecular mechanics method SIBFA, we have performed a search for the most stable binding modes of D- and L-thiomandelate to a 104-residue model of the metallo-beta-lactamase from B. fragilis, an enzyme involved in the acquired resistance of bacteria to antibiotics. Energy balances taking into account solvation effects computed with a continuum reaction field procedure indicated the D-isomer to be more stably bound than the L-one, conform to the experimental result. The most stably bound complex has the S(-) ligand bridging monodentately the two Zn(II) cations and one carboxylate O(-) H-bonded to the Asn193 side chain. We have validated the SIBFA energy results by performing additional SIBFA as well as quantum chemical (QC) calculations on small (88 atoms) model complexes extracted from the 104-residue complexes, which include the residues involved in inhibitor binding. Computations were done in parallel using uncorrelated (HF) as well as correlated (DFT, LMP2, MP2) computations, and the comparisons extended to corresponding captopril complexes (Antony et al., J Comput Chem 2002, 23, 1281). The magnitudes of the SIBFA intermolecular interaction energies were found to correctly reproduce their QC counterparts and their trends for a total of twenty complexes.  相似文献   

4.
Total intermolecular interaction energies are determined with a first version of the Gaussian electrostatic model (GEM-0), a force field based on a density fitting approach using s-type Gaussian functions. The total interaction energy is computed in the spirit of the sum of interacting fragment ab initio (SIBFA) force field by separately evaluating each one of its components: electrostatic (Coulomb), exchange repulsion, polarization, and charge transfer intermolecular interaction energies, in order to reproduce reference constrained space orbital variation (CSOV) energy decomposition calculations at the B3LYP/aug-cc-pVTZ level. The use of an auxiliary basis set restricted to spherical Gaussian functions facilitates the rotation of the fitted densities of rigid fragments and enables a fast and accurate density fitting evaluation of Coulomb and exchange-repulsion energy, the latter using the overlap model introduced by Wheatley and Price [Mol. Phys. 69, 50718 (1990)]. The SIBFA energy scheme for polarization and charge transfer has been implemented using the electric fields and electrostatic potentials generated by the fitted densities. GEM-0 has been tested on ten stationary points of the water dimer potential energy surface and on three water clusters (n = 16,20,64). The results show very good agreement with density functional theory calculations, reproducing the individual CSOV energy contributions for a given interaction as well as the B3LYP total interaction energies with errors below kBT at room temperature. Preliminary results for Coulomb and exchange-repulsion energies of metal cation complexes and coupled cluster singles doubles electron densities are discussed.  相似文献   

5.
To account for the distortion of the coordination sphere that takes place in complexes containing open-shell metal cations such as Cu(II), we implemented, in sum of interactions between fragments ab initio computed (SIBFA) molecular mechanics, an additional contribution to take into account the ligand field splitting of the metal d orbitals. This term, based on the angular overlap model, has been parameterized for Cu(II) coordinated to oxygen and nitrogen ligands. The comparison of the results obtained from density functional theory computations on the one hand and SIBFA or SIBFA-LF on the other shows that SIBFA-LF gives geometric arrangements similar to those obtained from quantum mechanical computations. Moreover, the geometric improvement takes place without downgrading the energetic agreement obtained from SIBFA. The systems considered are Cu(II) interacting with six water molecules, four ammonia or four imidazoles, and four water plus two formate anions.  相似文献   

6.
We have explored the conformation-dependent interaction energy of the triphosphate moiety, a key constituent of ATP and GTP, with a closed-shell divalent cation, Zn2+, used as a probe. This was done using the SIBFA polarizable molecular mechanics procedure. We have resorted to a previously developed approach in which triphosphate is built out from its elementary constitutive fragments, and the intramolecular, interfragment, interaction energies are computed simultaneously with their intermolecular interactions with the divalent cation. This approach has enabled reproduction of the values of the intermolecular interaction energies from ab initio quantum-chemistry with relative errors <3%. It was extended to the complex of a nonhydrolyzable analog of ATP with the active site of a bacterial enzyme having two Mg2+ cations as cofactors. We obtained following energy-minimization a very close overlap of the ATP analog over its position from X-ray crystallography. For models of the ATP analog-enzyme complex encompassing up to 169 atoms, the values of the SIBFA interaction energies were found to match their DFT counterparts with relative errors of <2%.  相似文献   

7.
Type I phosphomannose isomerase (PMI) is a Zn-dependent metalloenzyme involved in the isomerization of D-fructose 6-phosphate to D-mannose 6-phosphate. One of our laboratories has recently designed and synthesized 5-phospho-D-arabinonohydroxamate (5PAH), an inhibitor endowed with a nanomolar affinity for PMI (Roux et al., Biochemistry 2004, 43, 2926). By contrast, the 5-phospho-D-arabinonate (5PAA), in which the hydroxamate moiety is replaced by a carboxylate one, is devoid of inhibitory potency. Subsequent biochemical studies showed that in its PMI complex, 5PAH binds Zn(II) through its hydroxamate moiety rather than through its phosphate. These results have stimulated the present theoretical investigation in which we resort to the SIBFA polarizable molecular mechanics procedure to unravel the structural and energetical aspects of 5PAH and 5PAA binding to a 164-residue model of PMI. Consistent with the experimental results, our theoretical studies indicate that the complexation of PMI by 5PAH is much more favorable than by 5PAA, and that in the 5PAH complex, Zn(II) ligation by hydroxamate is much more favorable than by phosphate. Validations by parallel quantum-chemical computations on model of the recognition site extracted from the PMI-inhibitor complexes, and totaling up to 140 atoms, showed the values of the SIBFA intermolecular interaction energies in such models to be able to reproduce the quantum-chemistry ones with relative errors < 3%. On the basis of the PMI-5PAH SIBFA energy-minimized structure, we report the first hypothesis of a detailed view of the active site of the zinc PMI complexed to the high-energy intermediate analogue inhibitor, which allows us to identify active site residues likely involved in the proton transfer between the two adjacent carbons of the substrates.  相似文献   

8.
We calibrate and validate the parameters necessary to represent the dianionic phosphate group (DPG) in molecular mechanics. DPG is an essential fragment of signaling biological molecules and protein-binding ligands. It is a constitutive fragment of biosensors, which bind to the dimer interface of phosphoglucose isomerase (PGI), an intracellular enzyme involved in sugar metabolism, as well as an extracellular protein known as autocrine motility factor (AMF) closely related to metastasis formation. Our long-term objective is to design DPG-based biosensors with enhanced affinities for AMF/PGI cancer biomarker in blood. Molecular dynamics with polarizable potentials could be used toward this aim. This requires to first evaluate the accuracy of such potentials upon representing the interactions of DPG with its PGI ligands and tightly bound water molecules. Such evaluations are done by comparisons with high-level ab initio quantum chemistry (QC) calculations. We focus on the Sum of Interactions Between Fragments Ab initio computed (SIBFA) polarizable molecular mechanics procedure. We present first the results of the DPG calibration. This is followed by comparisons between ΔE(SIBFA) and ΔE(QC) regarding bi-molecular complexes of DPG with the main-chain and side-chain PGI residues, which bind to it in the recognition site. We then consider DPG complexes with an increasing number of PGI residues. The largest QC complexes encompass the entirety of the recognition site, with six structural water molecules totaling up to 211 atoms. A persistent and satisfactory agreement could be shown between ΔE(SIBFA) and ΔE(QC). These validations constitute an essential first step toward large-scale molecular dynamics simulations of DPG-based biosensors bound at the PGI dimer interface. © 2020 Wiley Periodicals, Inc.  相似文献   

9.
In this work, magnetometry and high-frequency and -field electron paramagnetic resonance spectroscopy (HFEPR) have been employed in order to determine the spin Hamiltonian (SH) parameters of the non-Kramers, S = 1, pseudooctahedral trans-[Ni(II){(OPPh(2))(EPPh(2))N}(2)(sol)(2)] (E = S, Se; sol = DMF, THF) complexes. X-ray crystallographic studies on these compounds revealed a highly anisotropic NiO(4)E(2) coordination environment, as well as subtle structural differences, owing to the nature of the Ni(II)-coordinated solvent molecule or ligand E atoms. The effects of these structural characteristics on the magnetic properties of the complexes were investigated. The accurately HFEPR-determined SH zero-field-splitting (zfs) D and E parameters, along with the structural data, provided the basis for a systematic density functional theory (DFT) and multiconfigurational ab initio computational analysis, aimed at further elucidating the electronic structure of the complexes. DFT methods yielded only qualitatively useful data. However, already entry level ab initio methods yielded good results for the investigated magnetic properties, provided that the property calculations are taken beyond a second-order treatment of the spin-orbit coupling (SOC) interaction. This was achieved by quasi-degenerate perturbation theory, in conjunction with state-averaged complete active space self-consistent-field calculations. The accuracy in the calculated D parameters improves upon recovering dynamic correlation with multiconfigurational ab initio methods, such as the second-order N-electron valence perturbation theory NEVPT2, the difference dedicated configuration interaction, and the spectroscopy-oriented configuration interaction. The calculations showed that the magnitude of D (~3-7 cm(-1)) in these complexes is mainly dominated by multiple SOC contributions, the origin of which was analyzed in detail. In addition, the observed largely rhombic regime (E/D = 0.16-0.33) is attributed to the highly distorted metal coordination sphere. Of special importance is the insight by this work on the zfs effects of Se coordination to Ni(II). Overall, a combined experimental and theoretical methodology is provided, as a means to probe the electronic structure of octahedral Ni(II) complexes.  相似文献   

10.
An extension of the SIBFA polarizable molecular mechanics procedure to flexible oligopeptides is reported. The procedure is evaluated by computing the relative conformational energies, deltaE(conf), of the alanine tetrapeptide in 10 representative conformations, which were originally derived by Beachy et al. (J Am Chem Soc 1997, 119, 5908) to benchmark molecular mechanics procedures with respect to ab initio computations. In the present study, a particular emphasis is on the separable nature of the components of the energy and the particular impact of the polarization energy component on deltaE(conf). We perform comparisons with respect to single-point HF, DFT, LMP2, and MP2 computations done at the SIBFA-derived energy minima. Such comparisons are made first for the 10 conformers derived from phi/psi torsional angle energy-minimization (the rigid rotor approach), and, in a second step, after allowing additional relaxation of the C(alpha) centered valence angles. In both series of energy-minimization, the SIBFA deltaE(conf) compared best with the LMP2 results using the 6-311G** basis set, the rms being 1.3 kcal/mol. In the absence of the polarization component, the rms is 3.5 kcal/mol. In both series of minimizations, the magnitudes of deltaE(conf), computed as differences with respect to the most stable conformer taken as energy zero, decrease along the series: HF > DFT > LMP2 > SIBFA > MP2, indicative of increasing stabilization of the most highly folded conformers.  相似文献   

11.
An additive procedure (SIBFA) is developed for the rapid computation of conformational energy variations in very large molecules. The macromolecule is built out of constitutive molecular fragments and the intramolecular energy is computed as a sum of interaction energies between the fragments. The electrostatic and the polarization components are calculated using multicenter multipole expansions of theab initio SCF electron density of the fragments. The repulsion component is obtained as a sum of bond and lone pair interactions.Tests of the procedure on a series of model compounds containing ether oxygens and pyridine-like nitrogens are reported and compared with the results of correspondingab initio SCF calculations. The resulting methodology is compatible with the simultaneous computation of intermolecular interactions.  相似文献   

12.
In this study we compare the binding energies of polycoordinated complexes of Zn2+ within cavities composed of model “hard” (H2O, OH) or “soft” (CH3SH, CH3S) ligands. Ab initio supermolecule computations are performed at the HF and MP2 levels using extended basis sets to determine the binding energies and their components as a function of: the number of ligands, ranging from three to six; the net charge of the cavity; and the “hard” versus “soft” character of the ligands. These ab initio computations are used to test the reliability of the SIBFA molecular mechanics procedure, originally formulated and calibrated on the basis of ab initio computations, for such charged systems. The SIBFA intermolecular interaction energies match the corresponding ab initio values using a coreless effective potential split‐valence basis set with a relative error of ≤3%. Extensions to binuclear Zn2+ complexes, such as those that occur in the Zn‐binding sites of Gal4 and β‐lactamase proteins, are performed to test the applicability of the methodology for such systems. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1011–1039, 2000  相似文献   

13.
An ab initio computational study of the properties of four linear dihydrogen-bonded complexes pairing MH2 (M = Zn, Cd) with HCCRgF (Rg = Ar, Kr) was undertaken at the MP2/DGDZVP level of theory. The calculated complexation energies of the linear complexes vary between 6.5 kJ/mol for M = Zn to 8.5 kJ/mol for M = Cd. Equilibrium interatomic H...H distances are roughly 2.07 A for all four complexes. The red shifts of the H-C stretching frequency of HCCRgF correlate nicely with the interaction energies.  相似文献   

14.
Density functional and correlated ab initio methods were used to calculate, compare, and analyze bonding interactions in late-transition-metal alkyl and heteroatom complexes (M-X). The complexes studied include: (DMPE)Pt(CH(3))(X) (DMPE = 1,2-bis(dimethylphosphino)ethane), Cp*Ru(PMe(3))(2)(X) (Cp* = pentamethylcyclopentadienyl), (DMPE)(2)Ru(H)(X), (Tp)(CO)Ru(Py)(X) (Tp = trispyrazolylborate), (PMe(3))(2)Rh(C(2)H(4))(X), and cis-(acac)(2)Ir(Py)(X) (acac = acetylacetonate). Seventeen X ligands were analyzed that include alkyl (CR(3)), amido (NR(2)), alkoxo (OR), and fluoride. Energy decomposition analysis of these M-X bonds revealed that orbital charge transfer stabilization provides a straightforward model for trends in bonding along the alkyl to heteroatom ligand series (X = CH(3), NH(2), OH, F). Pauli repulsion (exchange repulsion), which includes contributions from closed-shell d(π)-p(π) repulsion, generally decreases along the alkyl to heteroatom ligand series but depends on the exact M-X complexes. It was also revealed that stabilizing electrostatic interactions generally decrease along this ligand series. Correlation between M-X and H-X bond dissociation energies is good with R(2) values between 0.7 and 0.9. This correlation exists because for both M-X and H-X bonds the orbital stabilization energies are a function of the orbital electronegativity of the X group. The greater than 1 slope when correlating M-X and H-X bond dissociation energies was traced back to differences in Pauli repulsion and electrostatic stabilization.  相似文献   

15.
2-Ammoniumethanethiolate, (-)SCH(2)CH(2)NH(3)(+), the first structurally characterized zwitterionic ammoniumthiolate, is the stable form of cysteamine (HL) in the solid state and in aqueous solution. Reactions of ZnCl(2), Cd(Oac)(2), and HgCl(2) with cysteamine and NaOH in a 1:2:2 ratio, respectively, lead to the homoleptic complexes ML(2). Their single-crystal X-ray structures demonstrate basic differences in the coordination chemistry of Zn(II), Cd(II), and Hg(II). While chelating N,S-coordination modes are found for all metal ions, Zn(II) forms a mononuclear complex with a distorted tetrahedral Zn(N(2)S(2)) coordination mode, whereas Hg(II) displays a dimer with Hg(N(2)S(2)) coordinated monomers being connected by two long Hg...S contacts. Solid-state (199)Hg NMR spectra of HgL(2) and [Hg(HL)(2)]Cl(2) reveal a low-field shift of the signals with increasing coordination number. Strong and nearly symmetric Cd-S-Cd bridges in solid CdL(2) lead to a chain structure, Cd(II) displaying a distorted square pyramidal Cd(N(2)S(3)) coordination mode. The ab initio [MP2/LANL2DZ(d,f)] structures of isolated ML(2) show a change from a distorted tetrahedral to bisphenoidal coordination mode in the sequence Zn(II)-Cd(II)-Hg(II). A natural bond orbital analysis showed a high ionic character for the M-S bonds and suggests that the S-M-S fragment is best described by a 3c4e bond. The strength of the M...N interactions and the stability of ML(2) toward decomposition to M and L-L decreases in the sequence Zn > Cd > Hg. Ab initio calculations further suggest that a tetrahedral S-M-S angle stabilizes Zn(II) against substitution by Cd(II) and Hg(II) in a M(N(2)S(2)) environment. Such geometry is provided in zinc-finger proteins, as was found by a database survey.  相似文献   

16.
Detailed investigations are performed of the binding energetics of Zn2+ to a series of neutral and anionic ligands making up the sidechains of amino acid residues of proteins, as well as ligands which can be involved in Zn2+ binding during enzymatic activation: imidazole, formamide, methanethiol, methanethiolate, methoxy, and hydroxy. The computations are performed using the SIBFA molecular mechanics procedure (SMM), which expresses the interaction energy under the form of four separate contributions related to the corresponding ab initio supermolecular ones: electrostatic, short-range repulsion, polarization, and charge transfer. Recent refinements to this procedure are first exposed. To test the reliability of this procedure in large-scale simulations of inhibitor binding to metalloenzyme cavities, we undertake systematic comparisons of the SMM results with those of recent large basis set ab initio self-consistent field (SCF) supermolecule computations, in which a decomposition of the total ΔE into its four corresponding components is done (N. Gresh, W. Stevens, and M. Krauss, J. Comp. Chem., 16 , 843, 1995). For each complex, the evolution of each individual SMM energy component as a function of radial and in- and out-of-plane angular variations of the Zn2+ position reproduces with good accuracy the behavior of the corresponding SCF term. Computations performed subsequently on di- and oligoligated complexes of Zn2+ show that the SIBFA molecular mechanics (SMM) functionals, Epol and Ect, closely account for the nonadditive behaviors of the corresponding second-order energy contributions determined from the ab initio SCF calculations on these complexes and their nonlinear dependence on the number of ligands. Thus, the total intermolecular interaction energies computed with this procedure reproduce, with good accuracy, the corresponding SCF ones without the need for additional, extraneous terms in the intermolecular potential of polyligated complexes of divalent cations. © 1995 by John Wiley & Sons, Inc.  相似文献   

17.
The existence of a network of structured waters in the vicinity of the bimetallic site of Cu/Zn‐superoxide dismutase (SOD) has been inferred from high‐resolution X‐ray crystallography. Long‐duration molecular dynamics (MD) simulations could enable to quantify the lifetimes and possible interchanges of these waters between themselves as well as with a ligand diffusing toward the bimetallic site. The presence of several charged or polar ligands makes it necessary to resort to second‐generation polarizable potentials. As a first step toward such simulations, we benchmark in this article the accuracy of one such potential, sum of interactions between fragments Ab initio computed (SIBFA), by comparisons with quantum mechanics (QM) computations. We first consider the bimetallic binding site of a Cu/Zn‐SOD, in which three histidines and a water molecule are bound to Cu(I) and three histidines and one aspartate are bound to Zn(II). The comparisons are made for different His6 complexes with either one or both cations, and either with or without Asp and water. The total net charges vary from zero to three. We subsequently perform preliminary short‐duration MD simulations of 296 waters solvating Cu/Zn‐SOD. Six representative geometries are selected and energy‐minimized. Single‐point SIBFA and QM computations are then performed in parallel on model binding sites extracted from these six structures, each of which totals 301 atoms including the closest 28 waters from the Cu metal site. The ranking of their relative stabilities as given by SIBFA is identical to the QM one, and the relative energy differences by both approaches are fully consistent. In addition, the lowest‐energy structure, from SIBFA and QM, has a close overlap with the crystallographic one. The SIBFA calculations enable to quantify the impact of polarization and charge transfer in the ranking of the six structures. Five structural waters, which connect Arg141 and Glu131, are endowed with very high dipole moments (2.7–3.0 Debye), equal and larger than the one computed by SIBFA in ice‐like arrangements (2.7 D).  相似文献   

18.
Ab initio molecular orbital (MO) calculations have been carried out for base-hydrogen fluoride (HF) complexes (base = O3 and SO2) in order to elucidate the structures and energetics of the complexes. The ab initio calculations were performed up to the QCISD(T)/6-311++G(d,p) level of theory. In both complexes, hydrogen-bonded structures where the hydrogen of HF orients toward one of the oxygen atoms of bases were obtained as stable forms. The calculations showed that cis and trans isomers exist in both complexes. All calculations for the SO2-HF complex indicated that the cis form is more stable in energy than the trans form. On the other hand, in O3-HF complexes, the stable structures are changed by the ab initio levels of theory used, and the energies of the cis and trans forms are close to each other. From the most sophisticated calculations (QCISD(T)/6-311++G(d,p)//QCISD/6-311+G(d) level), it was predicted that the complex formation energies for cis SO2-HF, trans SO2-HF, cis O3-HF, and trans O3-HF are 6.1, 5.7, 3.4, and 3.6 kcal/mol, respectively, indicating that the binding energy of HF to SO2 is larger than that of O3. The harmonic vibrational frequencies calculated for cis O3-HF and cis SO2-HF complexes were in good agreement with the experimental values measured by Andrews et al. Also, the calculated rotation constants for cis SO2-HF agreed with the experiment.  相似文献   

19.
20.
The structure of the complex [Zn(cyclen)Tu](NO(3))(2) (1) is reported (cyclen = 1,4,7,10-tetraazacyclododecane; Tu = thiourea): orthorhombic, space group P2(1)2(1)2(1), a = 11.4170(11) A, b = 12.1995(11) A, c = 12.5299(12) A, Z = 4, R = 0.0504. The coordination of the cyclen is the same as that found for other similar Zn(II) complexes, with square pyramidal coordination around the Zn(II) and mean Zn-N bond lengths of 2.16 A. The coordinated Tu occupies the axial coordination site, with Zn-S = 2.31 A. The Zn-S-C-N torsion angle, involving the coordinated Tu, of 75.4 degrees is unusually large, because such torsion angles involving coordinated Tu are normally closer to 0 degrees. The bonding between Zn and S is discussed in terms of overlap with the p orbitals on S, which favors the eclipsed (Zn-S-C-N torsion = 0 degrees) mode of coordination of Tu. The energies of eclipsed and staggered modes (Zn-S-C-N = 90 degrees) of coordination of Tu to metal ions are examined by means of ab initio calculations, using the STO-3G basis set. It is concluded that the rather low formation constant for the Tu complex with Zn(II)/cyclen reported in this work was due to steric effects in 1, which prevent the adoption of the lower energy eclipsed conformation. These steric effects, because of clashes that would occur between Tu in the eclipsed conformation and the cyclen ring, cause the coordination of Tu with a higher energy conformation, with Zn-S-C-N = 75.4 degrees. The latter approaches the high energy staggered conformation that has Zn-S-C-N = 90 degrees. log K(1) values for Cl(-), Br(-), I(-), and CN(-) are reported and shown to be consistent with the binding site on the Zn(II) in the Zn(II)/cyclen complex being softer in the hard and soft acids and bases (HSAB, Pearson 1997) sense than the Zn(II) aqua ion, but not as soft as Zn(II) in triaza macrocycles that promote tetrahedral coordination. The change in HSAB character from intermediate in the Zn(II) aqua ion to softer in the cyclen complex, and softer still in tridentate N-donor ligands in model complexes, and in the Zn(II) active site of carbonic anhydrase as representative of Zn(II) metalloenzymes in general, is discussed in terms of the role of such effects in the functioning of metalloenzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号