首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper is focused on the use of branched poly(ethyleneimine) (PEI) as reducing as well as stabilizing agent for the formation of gold nanoparticles in different media. The process of nanoparticle formation was investigated, in the absence of any other reducing agents, in microemulsion template phase in comparison to the nucleation process in aqueous polymer solution.

On the one hand, it was shown that the polyelectrolyte can be used for the controlled single-step synthesis and stabilization of gold nanoparticles via a nucleation reaction and particles with an average diameter of 7.1 nm can be produced.

On the other hand, it was demonstrated that the polymer can also act as reducing and stabilizing agent in much more complex systems, i.e. in water-in-oil (w/o) microemulsion droplets. The reverse microemulsion droplets of the quaternary system sodium dodecylsulfate (SDS)/toluene–pentanol (1:1)/water were successfully used for the synthesis of gold nanoparticles. The polymer, incorporated in the droplets, exhibits reducing properties, adsorbs on the surface of the nanoparticles and prevents their aggregation. Consequently, nanoparticles of 8.6 nm can be redispersed after solvent evaporation without a change of their size.

Nevertheless, the polymer acts already as a “template” during the formation of the nanoparticles in water and in microemulsion, so that an additional template effect of the microemulsion is not observed.

The particle formation for both methods is checked by means of UV–vis spectroscopy and the particle size and size distribution are investigated via dynamic light scattering and transmission electron microscopy (TEM).  相似文献   


2.
自行设计合成了新颖的苄胺型双链表面活性剂3,4-双十二烷氧基苄胺(DDOBA). 利用DDOBA/正丁醇/正庚烷/甲酸/HAuCl4·4H2O自发形成的水/油(W/O)型微乳液作为微反应器, 通过微波辐射下的甲酸还原法成功制备了DDOBA保护的憎水性金纳米粒子, 并通过紫外-可见(UV-Vis)光谱、透射电镜(TEM)、高分辨透射电镜(HR-TEM)和X射线衍射(XRD)等方法进行了表征和分析. 结果显示, DDOBA既可参与形成稳定的W/O型(油包水型)微乳液, 又可作为金纳米粒子的良好保护剂. 在合适的微乳液体系组成范围内, 用本实验方法可以获得高单分散性的憎水性金纳米粒子, 并能在空气/水界面上自动形成大面积短程有序的纳米金二维自组装膜.  相似文献   

3.
Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions   总被引:11,自引:0,他引:11  
The use of an inorganic phase in water-in-oil microemulsions has received considerable attention for preparing metal particles. This is a new technique, which allows preparation of ultrafine metal particles within the size range 5 nm相似文献   

4.
5.
张万忠  乔学亮  罗浪里  陈建国 《化学学报》2008,66(11):1377-1381
在琥珀酸二异辛酯磺酸钠(AOT)为表面活性剂、环己烷为连续相形成的微乳体系中, 利用水合肼还原AgNO3制备了分散性良好的纳米银. 利用紫外-可见(UV-Vis)光谱和透射电镜(TEM)对所得产物进行了表征, TEM显微图像表明形成粒子为球形结构, 平均粒径为5.10 nm, 标准偏差为2.84 nm. 分别利用正己烷、正庚烷、正辛烷、环己烷和十二烷等作连续介质, 研究了微乳液中连续相对纳米银形成的影响. 随着正烷烃碳链长度的增加, 微乳液中胶束之间的交换速率增大, 形成粒子的平均粒径逐渐减小. 十二烷形成的微乳体系制备的纳米银溶胶具有最宽的共振吸收峰, 所得的纳米银粒子平均粒径最小. 环己烷形成的微乳液中反胶束具有特殊的界面强度, 导致纳米银晶核的形成速率过低, 纳米银晶粒的生长不完全.  相似文献   

6.
Stable ultra-small gold nanoparticles have been synthesized in aqueous phase by using a tri-block copolymer (BMB) as a templating agent consisting of two PEG-methylacrylate chains (B blocks) anchored to a poly(methacrylic) moiety containing a trithiocarbonate unit (M block). The effect of the BMB/Au molar ratios on the final particle size, shape and monodispersity has been investigated. The synthesized nanosols have been characterized by means of Visible Absorption, Small Angle X-ray Scattering (SAXS), and Transmission Electron Microscopy (TEM). Results clearly indicate that the polymer plays a key role in determining the size and shape of gold particles, from fractal-like structures to monodisperse spherical particles with a mean diameter of about 3 nm. The aggregation behavior of these nanostructures has been characterized both in solution (SAXS) as well as on mica substrate (AFM) and has been proven to be driven by the polymer to gold concentration ratio.  相似文献   

7.
For the synthesis of Pt nanoparticles we used water-in-oil droplet microemulsions as templates. The focus was on the correlation between the size of the microemulsion droplets and that of the resulting Pt particles. To study this correlation in a systematic way, all particles were synthesized at the water emulsification failure boundaries where the microemulsion droplets are spherical and where their size can easily be tuned by the amount of added water. The metallic particles were synthesized by mixing two microemulsions one of which contains the metal salt H(2)PtCl(6) and the other the reducing agent NaBH(4). The size and structure of the microemulsion droplets was studied via small-angle X-ray scattering, while the Pt particles were characterized by high-resolution transmission electron microscopy in combination with energy-dispersive X-ray spectroscopy and selected area electron diffraction. The clear correlation between droplet and particle size was further supported by accompanying Monte Carlo simulations.  相似文献   

8.
The ligand-free Heck reaction catalyzed by Pd(OAc)2 performed well in a TX10 oil-in-water microemulsion. TEM proved in situ formation distributed palladium nanoparticles in the microemulsion. The role of TX10 in the reaction system is the palladium nanoparticles reducing agent and stabilizer. The effect of reaction parameters on the Heck reaction conversion were discussed. The results indicated that the aqueous phase concentration, the base concentration, and the temperature played key roles in the conversion of the reaction. Iodobenzene was converted to the corresponding trans-stilbene quantitatively within 90-150 min. Therefore, the heptane/TX 10/butanol/water/propylene glycol microemulsion containing in situ formed palladium nanoparticles was a very efficient catalyst system for the ligand-free Heck reaction.  相似文献   

9.
Uniform and stable polymer protected spherical gold nanoparticles were synthesized using glycerol as reducing agent. Further it was observed that the morphology of the particles varied from spherical to triangular prismatic gold nanoparticles when the reaction was changed from normal mode of reflux condition to microwave mode (MW) of heating. Further a brief mechanism relating the formation of prisms with the orientation of polymer and nucleation period has been discussed. Formation of triangular prismatic and spherical gold nanoparticles were characterised using UV–vis spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis.  相似文献   

10.
This paper is focused on the characterization of polyelectrolyte-modified inverse microemulsions and their use as templates for the synthesis of magnetite nanoparticles. It is shown that the cationic polyelectrolyte poly(diallyldimethylammonium chloride) (PDADMAC) of low molar mass can be incorporated into the individual inverse microemulsion droplets (L2 phase) consisting of heptanol, water, and an amphoteric surfactant with a sulfobetaine head group. Up to a polymer concentration of 20% by weight in the aqueous phase and for different molecular weights of the polymer, an isotropic phase still exists. At a PDADMAC concentration of 10% the area of the isotropic L2 phase is shifted in direction to the water corner. In the percolated area of the L2 phase, i.e., at higher water content, a temperature-dependent change in the conductivity can by observed, and bulk water can be detected by means of differential scanning calorimetry measurements. The unusual temperature-dependent behavior of the polymer-modified system, i.e., the conductivity decrease with increasing temperature, can be explained by temperature-sensitive polyelectrolyte-surfactant interactions, influencing the droplet-droplet interactions. These PDADMAC-modified microemulsions can be successfully used as a template for the formation of ultrafine magnetite particles, in contrast to the nonmodified microemulsion, where the process is misdirected due to the "disturbing" effect of the surfactants. However, in the presence of PDADMAC the surfactant head groups were masked, and therefore magnetite can be synthesized. During the process of magnetite formation the PDADMAC controls the particle growing and stabilizes spherical magnetite particles with a diameter of 17 nm, which can be redispersed without a change in size.  相似文献   

11.
The present study evaluates a new method to prepare Cerium oxide (CeO2) nanoparticles by formamide/tri(ethyleneglycol)monododecyl ether (C12E3)/n-octane oil-continuous nonaqueous microemulsion. The effect of the polar phase (formamide/water) on the phase behavior, drop size, and conductivity behavior of the reverse microemulsion were investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the phase and morphology of synthesized CeO2 nanoparticles. It was found that the CeO2 powders synthesized within nonaqueous microemulsions and aqueous microemulisons had an average particle size of 30–50 nm and 15–40 nm, respectively. The experimental results indicate the formation mechanism of CeO2 nanoparticles in formamide nonaqueous microemulsion and aqueous microemulsion is similar, and the formamide nonaqueous microemulsion can be used as nanoreactors for preparation of nanoparticles.  相似文献   

12.
This paper is focused on the influence of added polyampholyte, namely poly(N,N′-diallyl-N,N′-dimethyl-alt-maleamic carboxylate) on the inverse micellar phase range of the pseudo-ternary system consisting of toluene–pentanol (1:1)/SDS/water in dependence on the pH value and the temperature. Investigations on phase behavior have revealed that a greater extension in direction to the water-rich corner can be found at pH 4 compared to pH 9. In order to understand changes in the microstructure, polymer–surfactant interactions in dependence on pH have been examined by means of diffusion-ordered spectroscopy, differential scanning calorimetry, as well as conductivity measurements. The results have proven that the present microemulsion consists of water-in-oil droplets, with the polyampholyte located more in the inner core of the water droplets at pH 9 rather than at the interphase of the surfactant film at pH 4.  相似文献   

13.
The influence of the cationic polyelectrolyte poly(diallyldimethylammonium chloride) on structure formation in the inverse micellar region (L2 phase) of the ternary system 3 (N,N-dimethyldodecylammonio)propanesulfonate/alcohol/water has been investigated. Up to a polymer concentration in the aqueous phase of 10 wt %, an isotropic phase still exists. As the chain length of the alcohol component increases, the isotropic phase region is reduced and shifted in direction to the water corner. The isotropic polyelectrolyte-modified L2 phase of the heptanol-based microemulsion has been studied in much more detail by means of conductometric, rheological, and differential scanning calorimetry measurements. The polyelectrolyte-modified microemulsion phase shows a characteristic low shear viscosity and Newtonian flow behavior. The characteristic features of the nonpercolated microemulsion droplets are the low conductivity and the disappearance of bulk water. One can conclude from the experimental data that the individual nonpercolated polyelectrolyte-stuffed microemulsion droplets are approximately uniform in size. In addition, the area of the polyelectrolyte-modified inverse microemulsion phase with heptanol and octanol depends on the temperature. This means that the area of the L2 region can be increased by the temperature being increased from room temperature to 40 °C. This behavior can be explained by a change in the bending elasticity of the surface film induced by Coulombic interactions between the functional groups of the polyelectrolyte and the surfactant head groups. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 742–751, 2004  相似文献   

14.
 The adsorption of the diblock polyampholyte poly (methacrylic acid)-block-poly((dimethylamino)ethyl methacrylate) from aqueous solution on silicon substrates was investigated as a function of polymer concentration and pH. Dynamic light scattering and electrokinetic measurements were used to characterize the polyampholyte in solution. The amount of polymer adsorbed was determined by ellipsometry and lateral structures of the polymer layer were investigated by scanning force microscopy. The amount of polymer adsorbed was found to be strongly influenced by the pH of the polymer solution, while the size of the polyampholyte micelles adsorbed on the surface was hardly affected by pH during adsorption. From investigations by scanning force microscopy well-seperated micelles were seen in the dried monolayers adsorbed directly from solution. The structures at the surface are correlated to structures in solution, and the adsorbed amount depends on the relative charge of the micelles and the surface. Received: 13 September 1999 Accepted in revised form: 8 December 1999  相似文献   

15.
Synthesis of gold and silver hydrosols was carried out in a one-step process by reduction of aqueous solutions of metal salts using poly(N-vinyl-2-pyrrolidone) (PVP). Both kinds of metal nanoparticles were obtained without the addition of any other reducing agent, at low temperatures and using water as the synthesis solvent. Shape, size, and optical properties of the particles could be tuned by changing the employed PVP/metal salt ratio. It is proposed that PVP acts as the reducing agent suffering a partial degradation during the nanoparticles synthesis. Two possible mechanisms are proposed to explain the reduction step: direct hydrogen abstraction induced by the metal ion and/or reducing action of macroradicals formed during degradation of the polymer. Initial formation of the macroradicals might be associated with the metal-accelerated decomposition of low amounts of peroxides present in the commercial polymer.  相似文献   

16.
The structure of a microemulsion mixed with polymer networks was investigated by means of small-angle neutron scattering (SANS). The system consists of nonionic surfactant, polymer network, oil, and water. The microemulsion and the polymer network employed in this work are known to undergo temperature-induced structural transition and volume phase transition, respectively. Polymer solutions and gels were made by polymerizing monomer solutions in the presence of microemulsion droplets. In the case of a mixture of an N-isopropylacrylamide (NIPA) monomer solution and a microemulsion, the NIPA monomer was found to behave as a cosurfactant. However, polymerization resulted in a phase separation to polymer-rich and -poor phases. Interestingly, SANS results indicated that a well-developed ordered structure of oil domains was formed in polymer network and the structure was very different from its parent systems. Furthermore, the system underwent two different types of structural transitions with respect to temperature. One was originated from the structural transition of microemulsion due to the change of the spontaneous curvature and the other from the volume phase transition of the NIPA gel.  相似文献   

17.
This paper is focused on the temperature-dependent synthesis of gold nanotriangles in a vesicular template phase, containing phosphatidylcholine and AOT, by adding the strongly alternating polyampholyte PalPhBisCarb.

UV-vis absorption spectra in combination with TEM micrographs show that flat gold nanoplatelets are formed predominantly in the presence of the polyampholyte at 45°C. The formation of triangular and hexagonal nanoplatelets can be directly influenced by the kinetic approach, i.e., by varying the polyampholyte dosage rate at 45°C. Corresponding zeta potential measurements indicate that a temperature-dependent adsorption of the polyampholyte on the {111} faces will induce the symmetry breaking effect, which is responsible for the kinetically controlled hindered vertical and preferred lateral growth of the nanoplatelets.  相似文献   

18.
The deposition of gold at the interface between immiscible electrolyte solutions has been investigated using reduction of tetrachloroaurate or tetrabromoaurate in 1,2-dichloroethane, with aqueous phase hexacyanoferrate as reducing agent. In a clean environment without defects present at the interface, the Au(III) complex was reduced to the Au(I) complex, but no solid phase formation could be observed. A deposition process could only be observed through the addition of artificial nucleation sites in the form of palladium nanoparticles at the interface. This process could be associated with the reduction of the Au(I) halide complex to metallic gold, by determining the gold reduction potentials in 1,2-dichloroethane. XANES measurements indicate that tetrachloroaurate ion transfers intact into the organic phase, with the central Au atom retaining its oxidation state of +3 and the overall anion remaining charged at -1.  相似文献   

19.
A novel synthesis of "hairy urchin"-shaped polyaniline (PAni) and its surface coverage with nanospikes was achieved from a simple microemulsion polymerization technique in the presence of β-cyclodextrin (β-CD). The rodlike micelle phase was characterized, and the key factors affecting the formation of PAni nanostructures were systematically examined. Ferric chloride (FeCl(3)) has played a role as a structural directing agent to fabricate the polymer as hairy urchin-like structure/nanorods via a cooperative interaction between FeCl(3) and DoTAC in an aqueous medium. Host-guest inclusion complex of β-cyclodextrin with aniline was used as a monomer. It has been revealed that the formation of the supramolecular complexes of polyaniline with β-CD due to host-guest interaction is indispensable for the fabrication of these unique PAni nanostructures, and a suitable β-CD to aniline molar ratio is essential to their exclusive formation. Different varieties of PAni nanostructures such as hairy urchin, branched particles consisting of rodlike branches, and regular rodlike particles were obtained in the presence of FeCl(3). Also, in the absence of FeCl(3), a predominant product of regular spherical particles and wirelike aggregation exhibiting faceted surfaces were obtained. The structures of polyaniline hairy urchin-like nanorods were analyzed using transmission electron microscopy (TEM). The synthesized polymer was characterized by Fourier-transform infrared spectroscopy and X-ray diffraction technique. Additionally, the relationship between the morphology and the conductivity of the PAni nanostructures was investigated as well.  相似文献   

20.
This paper is focused on the formation of organically and inorganically passivated cadmium sulfide (CdS) nanoparticles in two different types of microemulsions. On the one hand, we used a ternary inverse microemulsion consisting of water, heptanol, and 3-(N,N-dimethyldodecylammonio)propanesulfonate and on the other hand, a poly(ethyleneimine)-based quaternary microemulsion containing water, toluene, pentanol, and sodium dodecylsulfate. UV-vis measurements confirm the formation of CdS-ZnS core-shell nanoparticles in the ternary microemulsion. Using the quaternary microemulsion template phase, polymer capped luminescent CdS nanoparticles can be formed. After a complete solvent evaporation, the nanoparticles are redispersed in water and characterized by means of dynamic light scattering and transmission electron microscopy. From the ternary microemulsion, well-stabilized CdS-ZnS core-shell nanoparticles with diameters of about 5 nm can be redispersed, but from the quaternary microemulsion, only nanoparticle aggregates of about 100 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号