首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper we discuss two issues related to model reduction of deterministic or stochastic processes. The first is the relationship of the spectral properties of the dynamics on the attractor of the original, high-dimensional dynamical system with the properties and possibilities for model reduction. We review some elements of the spectral theory of dynamical systems. We apply this theory to obtain a decomposition of the process that utilizes spectral properties of the linear Koopman operator associated with the asymptotic dynamics on the attractor. This allows us to extract the almost periodic part of the evolving process. The remainder of the process has continuous spectrum. The second topic we discuss is that of model validation, where the original, possibly high-dimensional dynamics and the dynamics of the reduced model – that can be deterministic or stochastic – are compared in some norm. Using the “statistical Takens theorem” proven in (Mezić, I. and Banaszuk, A. Physica D, 2004) we argue that comparison of average energy contained in the finite-dimensional projection is one in the hierarchy of functionals of the field that need to be checked in order to assess the accuracy of the projection.  相似文献   

2.
In this work we present a first attempt to quantify the effect of flow deformation on the microstructure of semicrystalline polymers. This necessitates bridging the macroscopic flow length scale with the microscopic (segment) length scale of the semicrystalline structure. To achieve this connection we developed a hierarchical approach where a thermodynamically consistent macroscopic constitutive equation is interfaced with a microscopic lattice-based Monte Carlo (MC) simulation of the polymer chain conformation. We first illustrate this approach in a two-dimensional (2D) “toy” application where the 2D equivalent of a macroscopic constitutive equation based on reptation theory is applied to describe the chain deformation and extended free energy in the amorphous bulk phase. The values for the derivative of the free energy with respect to the mean segment orientation tensor, calculated for a planar extensional flow, are then used as an extended nonequilibrium thermodynamic forcing term. This is added in a traditional Metropolis Monte Carlo scheme, developed for a 2D lattice representation of a lamellar semicrystalline polymer, to drive the flow-induced microstructure. Significant flow-induced changes are calculated, steadily increasing as the Weissenberg number increases.We subsequently extend these ideas further in a much more realistic three-dimensional (3D) application where the information for the thermodynamics of the bulk amorphous phase under a uniaxial extensional flow is extracted from a macroscopic network model, such as that of Phan-Thien and Tanner (PTT), connecting the free energy to the second moment of the end-to-end distance of a multisegment chain. Through a series of 3D nonequilibrium Monte Carlo simulations of both the amorphous and the semicrystalline microscopic morphologies, it is shown that the interaction of the flow-induced deformation with the semicrystalline microstructure is nonlinear: the amorphous interlamellar structure changes significantly from its corresponding homogeneous bulk amorphous state, even far away from the crystalline interface. Our approach allows for a quantitative estimation of this effect on both thermodynamic quantities, like the extended microscopic free energy, as well as various statistics of the chain conformations.  相似文献   

3.
高山  史东华  郭永新 《力学学报》2021,53(6):1712-1719
Hamel场变分积分子是一种研究场论的数值方法, 可以通过使用活动标架规避几何非线性带来的计算复杂度, 同时数值上具有良好的长时间数值表现和保能动量性质. 本文在一维场论框架下, 以几何精确梁为例, 从理论上探究Hamel场变分积分子的保动量性质. 具体内容包括: 利用活动标架法对几何精确梁建立动力学模型, 通过变分原理得到其动力学方程, 利用其动力学方程及Noether定理得到系统动量守恒律; 将几何精确梁模型离散化, 通过变分原理得到其Hamel场变分积分子, 利用Hamel场变分积分子和离散Noether定理得到离散动量守恒律, 并给出离散动量的一阶近似表达式; Hamel场变分积分子可在计算中利用系统对称性消除系统运动带来的非线性问题, 但此框架中离散对流速度、离散对流 应变及位形均不共点, 而这种错位导致离散动量中出现级数项, 本文对几何精确梁的离散动量与连续形式的关系及其应 用进行了讨论, 并通过算例验证了结论. 上述证明方法也同样适用一般经典场论场景下的Hamel场变分积分子. Hamel场变分积分子的动量守恒为进一步研究其保结构性质提供了参考依据.   相似文献   

4.
A general framework for the treatment of driven systems in nonequilibrium thermodynamics is discussed for two selected theories and a simple model system. The framework is based upon the of modeling and control of general physical systems proposed by van der Schaft and co-workers. The crucial concept is the notion of a Dirac structure representing the dynamical equations of motion as well as the power conserving interconnection structure of the system. We applied the framework to two existing theories and a very simple model system. The two selected theories are the “General Equation for the Non-Equilibrium Reversible-Irreversible Coupling” (GENERIC) formalism of Grmela and Öttinger and the Matrix model of Jongschaap; the model system is a viscous gas in a cylinder and an externally driven piston. It is shown that the new approach provides not only a common framework for both theories, but also useful extensions, in particular, an extended GENERIC treatment of driven systems.  相似文献   

5.
Green's functions for the field variables of a complete sphere subjected to normal surface traction are obtained with “free space” properties. Further, self-equilibrated singular solutions of the variables associated with tangentially applied point loads and concentrated surface moments are constructed. The solution formulae are derived within the framework of the improved theory of thin shells and thus incorporate the effect of transverse shear in the equilibrium of the shell element. Despite the complex character of the solution, expressed in terms of complex Legendre functions, the closed form of it reveals the effects of the new assumptions (presence of shear strains) onto the singular behavior of the associated kernels. Numerical results for the field variables demonstrate the differences between the two theories, classical and improved.  相似文献   

6.
Fully developed turbulent pipe flow of an aqueous solution of a rigid “rod-like” polymer, scleroglucan, at concentrations of 0.005% (w/w) and 0.01% (w/w) has been investigated experimentally. Fanning friction factors were determined from pressure-drop measurements for the Newtonian solvent (water) and the polymer solutions and so levels of drag reduction for the latter. Mean axial velocity u and complete Reynolds normal stress data, i.e. u′, v′ and w′, were measured by means of a laser Doppler anemometer at three different Reynolds numbers for each fluid. The measurements indicate that the effectiveness of scleroglucan as a drag-reducing agent is only mildly dependent on Reynolds number. The turbulence structure essentially resembles that of flexible polymer solutions which also lead to low levels of drag reduction.  相似文献   

7.
We study shear banding flows in models of wormlike micelles or polymer solutions, and explore the effects of different boundary conditions for the viscoelastic stress. These are needed because the equations of motion are inherently non-local and include “diffusive” or square-gradient terms. Using the diffusive Johnson–Segalman model and a variant of the Rolie-Poly model for entangled micelles or polymer solutions, we study the interplay between different boundary conditions and the intrinsic stress gradient imposed by the flow geometry. We consider prescribed gradient (Neumann) or value (Dirichlet) of the viscoelastic stress tensor at the boundary, as well as mixed boundary conditions in which an anchoring strength competes with the gradient contribution to the stress dynamics. We find that hysteresis during shear rate sweeps is suppressed if the boundary conditions favor the state that is induced by the sweep. For example, if the boundaries favor the high shear rate phase then hysteresis is suppressed at the low shear rate edges of the stress plateau. If the boundaries favor the low shear rate state, then the high shear rate band can lie in the center of the flow cell, leading to a three-band configuration. Sufficiently strong stress gradients due to curved flow geometries, such as that of cylindrical Couette flow, can convert this to a two-band state by forcing the high shear rate phase against the wall of higher stress, and can suppress the hysteresis loop observed during a shear rate sweep.  相似文献   

8.
《Comptes Rendus Mecanique》2014,342(6-7):410-416
Dynamic Mode Decomposition (DMD) is a recent post-processing technique that extracts from snapshots dynamic relevant information for the flow. Without explicit knowledge of the dynamical operator, the DMD algorithm determines eigenvalues and eigenvectors of an approximate linear model. The ability of DMD to extract dynamically relevant features of the flow predispose it for building a representative reduced-order subspace from the data and for deriving a reduced-order model. The use of the DMD for reduced-order modelling will be investigated in this paper on experimental flow data of a cylinder wake.  相似文献   

9.
The purpose of this work is the formulation and discussion of an approach to the modelling of anisotropic elastic and inelastic material behaviour at large deformation. This is done in the framework of a thermodynamic, internal-variable-based formulation for such a behaviour. In particular, the formulation pursued here is based on a model for plastic or inelastic deformation as a transformation of local reference configuration for each material element. This represents a slight generalization of its modelling as an elastic material isomorphism pursued in earlier work, allowing one in particular to incorporate the effects of isotropic continuum damage directly into the formulation. As for the remaining deformation- and stress-like internal variables of the formulation, these are modelled in a fashion formally analogous to so-called structure tensors. On this basis, it is shown in particular that, while neither the Mandel nor back stress is generally so, the stress measure thermodynamically conjugate to the plastic “velocity gradient”, containing the difference of these two stress measures, is always symmetric with respect to the Euclidean metric, i.e., even in the case of classical or induced anisotropic elastic or inelastic material behaviour. Further, in the context of the assumption that the intermediate configuration is materially uniform, it is shown that the stress measure thermodynamically conjugate to the plastic velocity gradient is directly related to the Eshelby stress. Finally, the approach is applied to the formulation of metal plasticity with isotropic kinematic hardening.  相似文献   

10.
Shear banding (SB) is manifested by the abrupt “demixing” of the flow into regions of high and low shear rate. In this paper, we first relate analytically the rheological parameters of the fluid with the range of shear rates and stresses of SB occurrence. For this, we accept that the origin of shear banding is constitutive, and adopt a non-linear viscoelastic expression able to accommodate the double-valuedness of the stress with flow intensity, under certain conditions. We then implement the model for the case of pressure driven flow through a cylindrical pipe; we derive approximate expressions for the velocity profile in the two-banded regions (core and outer annular), the overall throughput in the presence or absence of “spurt”, and the radial location limits of the shear rate discontinuity.  相似文献   

11.
This paper develops a yaw dynamic model for a farm tractor with a hitched implement, which can be used to understand the effect of tractor handling characteristics for design applications and for new automated steering control systems. Dynamic equations which use a tire-like model to capture the characteristics of the implement are found to adequately describe the tractor implement yaw dynamics. This model is termed the “3-wheeled” Bicycle Model since it uses an additional wheel (from the traditional bicycle model used to capture lateral dynamics of passenger vehicles) to account for the implement forces. The model only includes effects of lateral forces as it neglects differential longitudinal or draft forces between inner and outer sides of the vehicle. Experiments are taken to verify the hitch model using a three-dimensional force dynamometer. This data shows the implement forces are indeed proportional to lateral velocity and that differential draft forces can be neglected as derived in the “3-wheeled” Bicycle Model. Steady state and dynamic steering data are used for implements at varying depths and speeds to quantify the variation in the hitch loading. The dynamic data is used to form empirical transfer function estimates (ETFEs) of the implements and depths in order to determine the coefficients used in the “3-wheeled” Bicycle Model. Changes in a single parameter, called the hitch cornering stiffness, can capture the various implement configurations. Finally, a model that includes front wheel drive forces is derived. Experiments are taken which provide a preliminary look into the effect of four-wheel drive traction forces, and show a difference with two-wheel versus four-wheel drive, on the yaw dynamics of a tractor with the hitched implement.  相似文献   

12.
“Geomechatronics” is a technical field in which “Geotechniques” is fused with “Mechatronics” that is the technical field to promote the automatic control of machines by using the electronics. In the field of “Geomechatronics”, a construction machine, which treats geotechnical materials such as soil and rock, automatically evaluates the properties and conditions of the ground and determines the optimum controlling method of itself for the ground with the base of the machine–ground interaction. Some researches for practical use in the field of geomechatronics are introduced, and then the progressing view of this research and technical filed is explained in this paper.  相似文献   

13.
Dynamic plastic failure characteristics of a space free-free slender shell subjected to intense dynamic loading of suddenly applied pressure unsymmetrical triangle distributed along its span was studied. Both rigid perfectly plastic (r-p-p) analytical method and finite element method based elastic perfectly plastic (e-p-p) material idealization and shell element model were adopted to predict the local failure position in the structure. It was shown that both r-p-p and e-p-p model could estimate a plastic “kink” taking place in the slender shell, which reflects the strain localization of deformation. The comparison for the position of “kink” predicted by using r-p-p and e-p-p methods is found to be reasonable good.  相似文献   

14.
The standard approach to analyse the bubble motion is the well known Rayleigh–Plesset equation. When applying the toolbox of nonlinear dynamical systems to this problem several aspects of physical modelling are usually sacrificed. Particularly in vapour bubbles the heat transfer in the liquid domain has a significant effect on the bubble motion; therefore the nonlinear energy equation coupled with the Rayleigh–Plesset equation must be solved. The main aim of this paper is to find an efficient numerical method to transform the energy equation into an ODE system, which, after coupling with the Rayleigh–Plesset equation can be analysed with the help of bifurcation theory. Due to the strong nonlinearity and violent bubble motions the computational effort can be high, thus it is essential to reduce the size of the problem as much as possible. In the first part of the paper finite difference, Galerkin and spectral collocation methods are examined and compared in terms of efficiency. In the second part free and forced oscillations are analysed with an emphasis on the influence of heat transfer. In the case of forced oscillations the unstable branches of the amplification diagrams are also computed.  相似文献   

15.
Brittle materials randomly reinforced with a low volume fraction of strong, stiff and ductile fibers are considered, with specific reference to fiber-reinforced cements and concrete. Visible cracks in such materials are accompanied by a surrounding damage zone – together these constitute a very complex “crack system”. Enormous effort has been put into trying to understand the micromechanics of such systems. Almost all of these efforts do not deal with the “crack system” propagation behavior as a whole. The propagation process of such a “crack system” includes propagation of the visible crack and the growth of the damage zone. Propagation may take place by lengthening of the visible crack together with the concomitant lengthening of the surrounding damage zone, or simply by broadening of the damage zone while the visible crack length remains unchanged – or simultaneously by growth of both types. A phenomenological completely theoretical model (for an ideal material) is here proposed which can serve to examine the propagation process by means of energy principles, without recourse to the microscopic details of the process. An application of this theoretical approach is presented for the case of a damage zone evolving with a rectangular shape. This shape is chosen because it is expected that it will illustrate the nature of damage evolution and because the computational procedure necessary to follow the growth is the most straightforward.  相似文献   

16.
We formulate nonlinear integro-differential equation for the averaged collective Hamiltonian of a gas of interacting two-dimensional vortices, derive its analytical solution, and discuss the equilibrium, axially-symmetrical, probability distributions that are possible for such a model. We also theoretically prove that the probability distribution for a system of 2D point vortices takes a form similar to the Gibbs distribution, but point out that the physical fundamentals of such a system differ from the standard theory of interacting particles. Furthermore, we find thermodynamical functions for positive and negative “temperature” of the system, and point out that the states with positive “temperature” correspond to stationary bell-shape vortex distributions, while the states with negative “temperature” correspond to distributions localized near container walls. To cite this article: E. Bécu et al., C. R. Mecanique 336 (2008).  相似文献   

17.
The derivation of the overall behaviour of nonlinear viscoelastic (or rate-dependent elastoplastic) heterogeneous materials requires a linearisation of the constitutive equations around uniform per phase stress (or strain) histories. The resulting Linear Comparison Material (LCM) has to be linear thermoviscoelastic to fully retain the viscoelastic nature of phase interactions. Instead of the exact treatment of this LCM (i.e., correspondence principle and inverse Laplace transforms) as proposed by the “classical” affine formulation, an approximate treatment is proposed here. First considering Maxwellian behaviour, comparisons for a single phase as well as for two-phase materials (with “parallel” and disordered morphologies) show that the “direct inversion method” of Laplace transforms, initially proposed by Schapery (1962), has to be adapted to fit correctly exact responses to creep loading while a more general method is proposed for other loading paths. When applied to nonlinear viscoelastic heterogeneous materials, this approximate inversion method gives rise to a new formulation which is consistent with the classical affine one for the steady-state regimes. In the transient regime, it leads to a significantly more efficient numerical resolution, the LCM associated to the step by step procedure being no more thermoviscoelastic but thermoelastic. Various comparisons for nonlinear viscoelastic polycrystals responses to creep as well as relaxation loadings show that this “quasi-elastic” formulation yields results very close to classical affine ones, even for high contrasts.  相似文献   

18.
Starting from the issue of what is the correct form for a Legendre transformation of the strain energy in terms of Eulerian and two-point tensor variables we introduce a new two-point deformation tensor, namely H=(FF−T)/2, as a possible deformation measure involving points in two distinct configurations. The Lie derivative of H is work conjugate to the first Piola–Kirchhoff stress tensor P. The deformation measure H leads to straightforward manipulations within a two-point setting such as the derivation of the virtual work equation and its linearization required for finite element implementation. The manipulations are analogous to those used for the Lagrangian and Eulerian frameworks. It is also shown that the Legendre transformation in terms of two-point tensors and spatial tensors require Lie derivatives. As an illustrative example we propose a simple Saint Venant–Kirchhoff type of a strain-energy function in terms of H. The constitutive model leads to physically meaningful results also for the large compressive strain domain, which is not the case for the classical Saint Venant–Kirchhoff material.  相似文献   

19.
This paper discusses the crack driving force in elastic–plastic materials, with particular emphasis on incremental plasticity. Using the configurational forces approach we identify a “plasticity influence term” that describes crack tip shielding or anti-shielding due to plastic deformation in the body. Standard constitutive models for finite strain as well as small strain incremental plasticity are used to obtain explicit expressions for the plasticity influence term in a two-dimensional setting. The total dissipation in the body is related to the near-tip and far-field J-integrals and the plasticity influence term. In the special case of deformation plasticity the plasticity influence term vanishes identically whereas for rigid plasticity and elastic-ideal plasticity the crack driving force vanishes. For steady state crack growth in incremental elastic–plastic materials, the plasticity influence term is equal to the negative of the plastic work per unit crack extension and the total dissipation in the body due to crack propagation and plastic deformation is determined by the far-field J-integral. For non-steady state crack growth, the plasticity influence term can be evaluated by post-processing after a conventional finite element stress analysis. Theory and computations are applied to a stationary crack in a C(T)-specimen to examine the effects of contained, uncontained and general yielding. A novel method is proposed for evaluating J-integrals under incremental plasticity conditions through the configurational body force. The incremental plasticity near-tip and far-field J-integrals are compared to conventional deformational plasticity and experimental J-integrals.  相似文献   

20.
The nonextensive thermodynamic relations are expressed under the assumption of temperature duality, endowing the “physical temperature” and the “Lagrange temperature” in different physical senses. Based on this assumption, two sets of parallel Legendre transform structures are given. One is called “physical” set, and the other is called “Lagrange” set. In these two formalisms, the thermodynamic quantities and the thermodynamic relations are both liked through the Tsallis factor. Application of the two sets of the thermodynamic relations to the self-gravitating system shows that the heat capacity defined in the classical thermodynamics has no relevance to the stability of the system. Instead, the newly defined heat capacity can determine the stability of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号