首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Blue luminescent colloidal silicon nanocrystals (Si-ncs) were synthesized at room temperature by nanosecond pulsed laser ablation of a single-crystal silicon target in de-ionized water. Irregular Si-nc fragments obtained by laser ablation are stabilized into regularly shaped, spherical, and well-separated aggregates during the aging process in water. Aging in de-ionized water for several weeks improved the photoluminescence (PL) intensity. At least two weeks of aging are necessary for observation of broad blue room temperature PL with a maximum centered at 420 nm. Detailed structural analysis revealed that agglomerates after aging for several months contain Si-ncs with irregular shape smaller than the quantum confinement limit (<5 nm). These blue luminescent Si-ncs dispersed in de-ionized water exhibited a PL decay time of 6 ns, which is much faster than that of Si-ncs prepared in traditional ways (usually on the order of microseconds). The oxidized Si-ncs with quantum confinement effects are responsible for a PL band around 400 nm visible to the naked eye at room temperature.  相似文献   

2.
Zinc oxide films of 40 nm thickness have been deposited on glass substrates by pulsed laser deposition using an excimer XeCl laser (308 nm) at different substrate temperatures ranging from room temperature to 650 °C. Surface investigations carried out by using atomic force microscopy have shown a strong influence of temperature on the films surface topography. UV-VIS transmittance measurements have shown that our ZnO films are highly transparent in the visible wavelength region, having an average transmittance of ∼90%. The optical band gap of the films was found to be 3.26 eV, which is lower than the theoretical value of 3.37 eV. Besides the normal absorption edge related to the transition between the valence and the conduction band, an additional absorption band was also recorded in the wavelength region around 364 nm (∼3.4 eV). This additional absorption band may be due to excitonic, impurity, and/or quantum size effects. Photoreduction/oxidation in ozone of the ZnO films lead to larger conductivity changes for higher deposition temperature. In conclusion, the ozone sensing characteristics as well as the optical properties of the ZnO thin films deposited by pulsed laser deposition are strongly influenced by the substrate temperature during growth. The sensitivity of the films towards ozone might be enhanced significantly by the control of the films deposition parameters and surface characteristics.  相似文献   

3.
ZnO nanowires were fabricated on Au coated (0 0 0 1) sapphire substrates by using a pulsed Nd:YAG laser with a ZnO target in furnace. ZnO nanowires have various sizes and shapes with a different substrate position inside a furnace. The length and the diameter of these ZnO nanowires were around 3-4 μm and 120-200 nm, respectively, confirmed by scanning electron microscopy (SEM). The diameter control of the nanowires was achieved by varying the position of substrates. The ultraviolet emission of nanowires from the near band-edge emission (NBE) was observed at room temperature. The formation mechanism and the effect of different position of substrates on the structural and optical properties of ZnO nanowires are discussed.  相似文献   

4.
We report formation of colloidal suspension of zinc oxide nanoparticles by pulsed laser ablation of a zinc metal target at room temperature in different liquid environment. We have used photoluminescence, atomic force microscopy and X-ray diffraction to characterize the nanoparticles. The sample ablated in deionized water showed the photoluminescence peak at 384 nm (3.23 eV), whereas peaks at 370 nm (3.35 eV) were observed for sample prepared in isopropanol. The use of water and isopropanol as a solvent yielded spherical nanoparticles of 14-20 nm while in acetone we found two types of particles, one spherical nanoparticles with sizes around 100 nm and another platelet-like structure of 1 μm in diameter and 40 nm in width. The absorption peak of samples prepared in deionized water and isopropanol are seen to be substantially blue shifted relative to that of the bulk zinc oxide due to the strong confinement effect. The technique offers an alternative for preparing the nanoparticles of active metal.  相似文献   

5.
Three different gases (nitrogen (N2), oxygen (O2) and argon (Ar)) were used as background gases during the growth of pulsed laser deposition (PLD) Y2SiO5:Ce thin films. A Krypton fluoride laser (KrF), 248 nm was used for the PLD of the films on silicon (Si) (1 0 0) substrates. The effect of the background gases on the surface morphology, crystal growth and luminescent properties were investigated. All the experimental parameters, the gas pressure (455 mT), the substrate temperature (600 °C), the pulse frequency (8 Hz), the number of pulses (4000) and the laser fluence (1.6±0.2) J/cm2 were kept constant. The only parameter that was changed during the deposition was the ambient gas species. The surface morphology and average particle sizes were monitored with scanning electron microscopy (SEM) and atomic force microscopy (AFM). X-ray diffraction (XRD) and Auger electron spectroscopy (AES) were used to determine the crystal structure and composition, respectively. Cathodo- (CL) and photoluminescence (PL) were used to measure the luminescent intensities for the different phosphor thin films. The nature of the particles, ablated on the substrate, is related to the collisions between the ejected particles and the ambient gas particles. The CL and PL intensities also depend on the particle sizes. A 144 h (coulomb dose of 1.4×104 C cm−2) electron degradation study on the thin films ablated in the Ar gas environment resulted in a decrease in the main CL intensity peak at 440 nm and to the development of a new very broad luminescent peak spectra ranging from 400 to 850 nm due to the growth of a SiO2 layer on the surface.  相似文献   

6.
In this work, silicon nanocrystals (Si-nc) embedded in a silicon-rich silicon oxide (SRSO) matrix doped with Er3+ ions for different erbium and silicon concentrations have been deposited by electron-cyclotron resonance plasma-enhanced chemical-vapor-deposition (ECR-PECVD) technique. Their optical properties have been investigated by photoluminescence (PL) and reflectance spectroscopy.Room temperature emission bands centered at ∼1.54 and at 0.75 μm have been obtained for all samples. The most intense emission band at ∼1.54 μm was obtained for samples with concentrations of 0.45% and 39% for erbium and silicon, respectively. Moreover, it has been found that the broad emission band centered at ∼0.75 μm for all samples shows a very strong interference pattern related to the a specific sample structure and a high sample quality.  相似文献   

7.
Photoluminescence (PL) from silicon nanocrystals (Si-nc) prepared from pulverised porous silicon and embedded in undoped (SOG) or phosphorus-doped spin-on-glass (SOD) solutions was studied. Effects of rapid thermal annealing on the PL was also investigated. A strong room temperature PL signal was observed at 710 nm due to the recombination of electron-hole pairs in Si-nc and the PL maximum shifts to the blue region as the phosphorus concentration in the spin on glass increases. However, the rapid thermal annealing process (30 s, 900°C) quenches the PL response. These results suggest that for Si-nc/SOG (SOD) the surface termination is efficient but high phosphorus doping of Si-nc is detrimental to the PL.  相似文献   

8.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

9.
CdTe nanocrystals were grown from commercially available RG850 Schott filter glass by two-step heat-treatment process which almost doubles the particle to matrix volume fraction. A calculation shows that a quantized-state effective mass model in the strong confinement regime might be used to deduce the average radius for the nanocrystals larger than 2 nm in radius from the energetic position of the first exciton peak in optical absorption spectrum. Size-induced shift of ∼360 meV in the first exciton peak position was observed. The steady state photoluminescence spectra exhibit a broad band red shifted relative to the first exciton band, which indicates the existence of shallow trap states. The non-linear optical properties of CdTe nanocrystals were studied by room temperature resonant photoabsorption spectroscopy. The differential absorption spectra had three-lobed structure whose size-dependent evolution was explained by bleaching of the absorption, red shift and broadening in the Gaussian absorption band used to fit the first exciton peak. A maximum red shift of 2.32 meV for the average nanocrystal radius of 4.65 nm was estimated by fitting the photomodulation spectra with a combination of first and second derivative Gaussian absorption bands. We presume that the red shift is induced by the electric field of trapped charges in surface states. Internal electric field strengths of 23 and 65 kV/cm were predicted for the average nanocrystal radii of 3.95 and 4.65 nm, respectively, with the help of second-order perturbation theory in the strong confinement limit.  相似文献   

10.
Li-doping has been used to improve luminescent characteristics of thin films. Influence of Li-doping on the crystallization, surface morphology and luminescent properties of GdVO4:Eu3+ films have been investigated. Crystallinity and surface morphology of thin films have been very important factors to determine luminescent characteristics and depended on the deposition conditions. The GdVO4:Eu3+ and Li-doped GdVO4:Eu3+ thin films have been grown using pulsed laser deposition method on Al2O3 (0 0 0 1) substrates at a substrate temperature of 600 °C under an oxygen pressure of 13.33-53.33 Pa. The crystallinity and surface morphology of the films were investigated using X-ray diffraction (XRD) and atomic force microscope (AFM), respectively. A broadband incoherent ultraviolet light source with a dominant excitation wavelength of 310 nm and a luminescence spectrometer have been used to measure photoluminescence spectra at room temperature. The emitted radiation was dominated by the red emission peak at 619 nm radiated from the transition of 5D0-7F2 of Eu3+ ions. Particularly, the peak intensity of Li-doped GdVO4 films was increased by a factor of 1.7 in comparison with that of GdVO4:Eu3+ films. The enhanced luminescence results not only from the improved crystallinity but also from the reduced internal reflections caused by rougher surfaces. The luminescent intensity and surface roughness exhibited similar behavior as a function of oxygen pressure.  相似文献   

11.
In this study, SrAl2O4:Eu2+,Dy3+ thin film phosphors were deposited on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique. The films were deposited at different substrate temperatures in the range of 40-700 °C. The structure, morphology and topography of the films were determined by using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Photoluminescence (PL) data was collected in air at room temperature using a 325 nm He-Cd laser as an excitation source. The PL spectra of all the films were characterized by green phosphorescent photoluminescence at ∼530 nm. This emission was attributed to 4f65d1→4f7 transition of Eu2+. The highest PL intensity was observed from the films deposited at a substrate temperature of 400 °C. The effects of varying substrate temperature on the PL intensity were discussed.  相似文献   

12.
YVO4:Sm3+ films were deposited on Al2O3 (0 0 0 1) substrates at various oxygen pressures changing from 13.3 to 46.6 Pa by using the pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by means of X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The XRD pattern confirmed that YVO4:Sm3+ film has zircon structure and the AFM study revealed that the films consist of homogeneous grains ranging from 100 to 400 nm. The room temperature photoluminescence (PL) spectra showed that the emitted radiation was dominated by a reddish-orange emission peak at 602 nm radiating from the transition of (4G5/26H7/2). The crystallinity, surface morphology, and photoluminescence spectra of thin-film phosphors were highly dependent on the deposition conditions, in particular, the substrate temperature. The surface roughness and photoluminescence intensity of these films showed similar behavior as a function of oxygen pressure.  相似文献   

13.
Zinc nanostructures synthesized with different morphologies from the same evaporation/condensation technique are studied with concern to surface reactivity to NO2 by Diffuse Reflectance Infrared Fourier Transformed Spectroscopy (DRIFTS). Synthesis of nanopowders is obtained, according to previous work, by gas flow thermal evaporation at 540 °C of bulk Zn grains. Two types of Zn powders are obtained and studied in experiments. The first one is collected on the cold walls of the reactor as a deposit produced by thermophoretic effect. It is constituted by grains (∼10 μm) originated by the stratification of smaller aggregates (∼200 nm) and isolated primary particles (∼50 nm) born in the gas flow. The second type of powder is grown from the condensation of Zn chemical vapors within the expansion orifice of the quartz reactor after relatively long time (∼1 h) deposition process. It is constituted mainly by hollow Zn nanofibers with external and internal diameter about 100 and 60 nm. Preliminary characterization of the two types of powders is made by SEM, TEM, XRD. Thereafter, the two types of samples are studied by DRIFTS at variable temperature (VT). Comparison is made between the home-synthesized nanopowders with respect to commercial Zn standard dust. The Zn hollow nanofibers when exposed to NO2 are found to exhibit dramatic reactivity, which is not observed at all either in the case of clustered aggregate zinc or of commercial Zn dust powders. Results indicate that, at increasing temperature from RT to 300 °C, the hollow nanofibers surface reacts distinctively with adsorbant gas NO2, with contemporary formation of a progressively growing narrow absorption band at 2500 cm−1 and contemporary depression of a doublet (∼1600-1628 cm−1) band. In order to justify this striking spectral feature, we propose the occurring of a possible polymerization process at nanofibers surface where most probably as a consequence of pre-treatment and exposure to gas NO2 a very thin film of ZnO is formed. The possible role of huge specific surface of hollow nanofibers as inferred by preliminary SEM, TEM, XRD studies is discussed.  相似文献   

14.
HgCdTe thin films have been deposited on Si(1 1 1) substrates at different substrate temperatures by pulsed laser deposition (PLD). An Nd:YAG pulsed laser with a wavelength of 1064 nm was used as laser source. The influences of the substrate temperature on the crystalline quality, surface morphology and composition of HgCdTe thin films were characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED), atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDS). The results show that in our experimental conditions, the HgCdTe thin films deposited at 200 °C have the best quality. When the substrate temperature is over 250 °C, the HgCdTe film becomes thermodynamically unstable and the quality of the film is degraded.  相似文献   

15.
In this paper, we present an experimental study on the chemical and electrochemical etching of silicon carbide (SiC) in different HF-based solutions and its application in different fields, such as optoelectronics (photodiode) and environment (gas sensors). The thin SiC films have been grown by pulsed laser deposition method. Different oxidant reagents have been explored. It has been shown that the morphology of the surface evolves with the etching conditions (oxidant, concentration, temperature, etc.). A new chemical polishing solution of polycrystalline 6H-SiC based on HF:Na2O2 solution has been developed. Moreover, an electrochemical etching method has been carried out to form a porous SiC layer on both polycrystalline and thin SiC films. The PL results show that the porous polycrystalline 6H-SiC and porous thin SiC films exhibited an intense blue luminescence and a green-blue luminescence centred at 2.82 eV (430 nm) and 2.20 eV (560 nm), respectively. Different device structures based on both prepared samples have been investigated as photodiode and gas sensors.  相似文献   

16.
Not only vertically aligned ZnO nanowires but also horizontally aligned ZnO nanowires have been successfully grown on the annealed (0 0 0 1) c-cut and (1 1 2 0) a-cut sapphire substrates, respectively using catalyst-free nanoparticle-assisted pulsed-laser ablation deposition (NAPLD). The as-synthesized ZnO nanowires exhibit an ultraviolet emission at around 390 nm and the absent green emission under room temperature. The single ZnO nanowire was collected in the electrode gap by dielectrophoresis (DEP). Under the optical pumping, the single ZnO nanowire exhibited UV emission at around 390 nm with several sharp peaks whose energy spacings are almost constant, which greatly differs from the broad UV emission of the film with many nanowires, suggesting ZnO nanowires as candidates for laser media. The single ZnO nanowire showed polarized photoluminescence (PL). The as-synthesized ZnO nanowires could find many interesting applications in short-wavelength light-emitting diode (LED), laser diode and gas sensor.  相似文献   

17.
Thin nano-structured carbon films have been deposited in vacuum by pulsed laser ablation, from a rotating polycrystalline graphite target, on Si 〈1 0 0〉 substrates, kept at temperatures ranging from RT to 800 °C. The laser ablation was performed by a Nd:YAG laser, operating in the near IR (λ = 1064 nm).X-ray diffraction analysis, performed at grazing incidence angle, both in-plane (ip-gid) and out-of-plane (op-gid), has shown the growth of oriented nano-sized graphene particles, characterised by high inter-planar stacking distance (d? ∼ 0.39 nm), compared to graphite. The film structure and texturing are strongly related both to laser wavelength and substrate temperature: the low energy associated to the IR laser radiation (1.17 eV) generates activated carbon species of large dimensions that, also at low T (∼400 °C), easy evolve toward more stable sp2 aromatic bonds, in the plume direction. Increasing temperature the nano-structure formation increases, causing a further aggregation of aromatic planes, voids formation, and a related density (by X-ray reflectivity) drop to very low values. SEM and STM show for these samples a strongly increased macroscopic roughness. The whole process, mainly at higher temperatures, is characterised by a fast kinetic mode, far from equilibrium and without any structural or spatial rearrangement.  相似文献   

18.
Nanosecond pulsed laser ablation of silicon in liquids   总被引:2,自引:0,他引:2  
Laser fluence and laser shot number are important parameters for pulse laser based micromachining of silicon in liquids. This paper presents laser-induced ablation of silicon in liquids of the dimethyl sulfoxide (DMSO) and the water at different applied laser fluence levels and laser shot numbers. The experimental results are conducted using 15 ns pulsed laser irradiation at 532 nm. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablation of silicon in liquids using nanosecond pulsed laser irradiation at 532 nm. Silicon surface’s ablated diameter growth was measured at different applied laser fluences and shot numbers in both liquid interfaces. A theoretical analysis suggested investigating silicon surface etching in liquid by intense multiple nanosecond laser pulses. It has been assumed that the nanosecond pulsed laser-induced silicon surface modification is due to the process of explosive melt expulsion under the action of the confined plasma-induced pressure or shock wave trapped between the silicon target and the overlying liquid. This analysis allows us to determine the effective lateral interaction zone of ablated solid target related to nanosecond pulsed laser illumination. The theoretical analysis is found in excellent agreement with the experimental measurements of silicon ablated diameter growth in the DMSO and the water interfaces. Multiple-shot laser ablation threshold of silicon is determined. Pulsed energy accumulation model is used to obtain the single-shot ablation threshold of silicon. The smaller ablation threshold value is found in the DMSO, and the incubation effect is also found to be absent.  相似文献   

19.
Au/SiO2 nanocomposite films were prepared by radio frequency sputtering technique and annealing. The above nanocomposite films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and atomic force microscopy (AFM). The surface of the nanocomposite films was uniform with the particle diameter of 100-300 nm. The size of Au crystallites increased on increasing annealing time. The luminescent behavior of the nanocomposite films was characterized by photoluminescence (PL) with different excitation wavelengths. Two emission peaks at around 525 nm and 560 nm were observed with the excitation wavelength at 325 nm. An intensive emission peak at around 325 nm was observed with the excitation wavelength at 250 nm, which is related to the defective structure of the amorphous SiO2 layer because of oxygen deficiency, and could be applied to many fields, such as ultraviolet laser and ultraviolet detector.  相似文献   

20.
TiO2 has attracted a lot of attention due to its photocatalytic properties and its potential applications in environmental purification and self cleaning coatings, as well as for its high optical transmittance in the visible-IR spectral range, high chemical stability and mechanical resistance. In this paper, we report on the growth of TiO2 nanocrystalline films on Si (1 0 0) substrates by pulsed laser deposition (PLD). Rutile sintered targets were irradiated by KrF excimer laser (λ = 248 nm, pulse duration ∼30 ns) in a controlled oxygen environment and at constant substrate temperature of 650 °C. The structural and morphological properties of the films have been studied for different deposition parameters, such as oxygen partial pressure (0.05-5 Pa) and laser fluence (2- 4 J/cm2). X-ray diffraction (XRD) shows the formation of both rutile and anatase phases; however, it is observed that the anatase phase is suppressed at the highest laser fluences. X-ray photoelectron spectroscopy (XPS) measurements were performed to determine the stoichiometry of the grown films. The surface morphology of the deposits, studied by scanning electron (SEM) and atomic force (AFM) microscopies, has revealed nanostructured films. The dimensions and density of the nanoparticles observed at the surface depend on the partial pressure of oxygen during growth. The smallest particles of about 40 nm diameter were obtained for the highest pressures of inlet gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号