首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
胡德志 《物理学报》2009,58(2):1077-1082
为了提高脉冲激光制备薄膜的质量,准确掌握电声弛豫时间是关键,它对脉冲激光脉宽和能量密度的选取起着决定性的作用. 文中以铝靶材为例,利用经典的双温方程通过时域有限差分法(FDTD)得到电子、离子亚系统的温度随时间和位置演化的图像,进而得到电声弛豫时间的准确值. 这样便能准确划分热烧蚀和非平衡烧蚀,从而更好地控制激光的烧蚀过程. 同时找出了电声弛豫时间随激光脉宽以及能量密度变化的规律. 关键词: 飞秒激光 电声弛豫时间 双温方程 激光能量密度  相似文献   

2.
The electron phonon relaxation time as functions of pulse width and fluence of femtosecond laser is studied based on the two-temperature model. The two-temperature model is solved using a finite difference method for copper target. The temperature distribution of the electron and the lattice along with space and time for a certain laser fluence is presented. The time-dependence of lattice and electron temperature of the surface for different pulse width and different laser fluence are also performed, respectively. Moreover, the variation of heat-affected zone per pulse with laser Auence is obtained. The satisfactory agreement between our numerical results and experimental data indicates that the electron-phonon relaxation time is reasonably accurate with the influences of pulse width and Auence of femtosecond laser.  相似文献   

3.
Absorption, electron-phonon coupling and heating of nanoparticles (NPs) under action of short laser pulses on NPs and their cooling after the end of laser action usually has nonlinear character. Nonlinear electron-phonon coupling under action of pico- and femtosecond pulses on metal NPs depends on electron and lattice parameters. Optical (absorption, scattering, extinction) and thermo-physical (coefficient of thermal conductivity, heat capacity, etc.) parameters of different materials of NPs (metals, oxides, semiconductors, etc.) and environments (water, liquids, dielectrics, etc.) depend on temperature and determine nonlinear dynamics of NPs heating and cooling. It is very important to take into account the temperature dependence of optical and thermophysical parameters of NPs and surrounding media under investigation of absorption of laser radiation, electron-phonon coupling, nanoparticle (NP) heating, heat transfer and its cooling after the end of laser pulse action. Theoretical modeling of the processes of laser-NP interaction taking into account temperature dependences of parameters of NPs and environments was carried out. Influence of temperature dependences of these parameters on values and dynamics of the processes is determined.  相似文献   

4.
We propose a model describing the destruction of metals under ultrashort intense laser pulses when heated electrons affect the lattice through the direct electron-phonon interaction. The metal consists of hot electrons and a cool lattice. The lattice deformation is estimated immediately after the laser pulse up to the electron temperature relaxation time. The hot electrons are described with help of the Boltzmann and heat conduction equations. We use an equation of motion for the lattice displacements with the electron force included. Estimates of the lattice deformation show that the ablation regime can be achieved. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 3, 195–199 (10 August 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

5.
Electron-lattice kinetics of metals heated by ultrashort laser pulses   总被引:5,自引:0,他引:5  
We propose a kinetic model of transient nonequilibrium phenomena in metals exposed to ultrashort laser pulses when heated electrons affect the lattice through direct electron-phonon interaction. This model describes the destruction of a metal under intense laser pumping. We derive the system of equations for the metal, which consists of hot electrons and a cold lattice. Hot electrons are described with the help of the Boltzmann equation and equation of thermoconductivity. We use the equations of motion for lattice displacements with the electron force included. The lattice deformation is estimated immediately after the laser pulse up to the time of electron temperature relaxation. An estimate shows that the ablation regime can be achieved. Zh. éksp. Teor. Fiz. 115, 149–157 (January 1999) Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor.  相似文献   

6.
物理参数变化对短脉冲激光激励温度场的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
 为研究多物理参数(耦合系数、电子热导率、电子热容、晶格热容)同时随温度变化对短脉冲激光辐照金属材料产生温度场分布的影响,基于双温耦合理论,建立了短脉冲激光辐照金属材料金的加热过程的有限元求解模型。在同时考虑脉冲激光的空间、时间分布和多参数同时随温度变化的情况下,得到短脉冲激光辐照金属材料金激励产生的温度场二维瞬态分布,并进一步比较了多物理参数同时随温度变化和采用室温物理参数两种情况下温度场分布的区别。数值结果表明:多物理参数同时随温度变化使电子温度和晶格温度的上升变快,最大值变大,而且使得材料中激光穿透直接辐照到的区域温度变高。  相似文献   

7.
Here we report on experimental studies of femtosecond laser induced surface metal alloying. We demonstrate that layers of different metals can be mixed in a certain range of laser pulse energies. Numeric simulations demonstrate that the sub-surface melting and mixing is advantaged through the difference in the electron-phonon coupling constants of the metals in the multi-layer system. Dependence of the depth of the mixed layer on the number of laser pulses per unit area is studied. Numeric simulations illustrate physical picture of the laser alloying process.  相似文献   

8.
Ultrashort pulse laser ablation of metallic targets is investigated theoretically through establishing a modified two-temperature model that takes into account both the temperature dependent electron–lattice coupling and the electron–electron-collision dominated electron diffusion processes for higher electron temperature regime. The electron–lattice energy coupling rate is found to reduce only slowly with increasing pulse duration, but grow rapidly with laser fluence, implying that the melting time of metallic materials decreases as the laser intensity increases. By taking phase explosion as the primary ablation mechanism, the predicted dependences of ablation rates on laser energy fluences for different laser pulse widths match very well with the experimental data. It is also found that during phase explosion the ablation rate is almost independent of the pulse width, whereas the ablation threshold fluence increases with the pulse duration even for femtosecond pulses. These theoretical results should be useful in having proper understanding of the ablation physics of ultrafast micromachining of metal targets. PACS 52.50.Jm; 61.80.Az; 72.15.Cz; 79.20.Ap; 79.20.Ds  相似文献   

9.
We theoretically investigated different thermal relaxation participating in the ultrafast thermionic emission processes on gold film surface with a femtosecond pulse excitation. The thermionic emission regimes under the two temperature relaxation and the thermal diffusion relaxation were demonstrated. The simulations showed that the thermionic emission properties can be defined in the regime under two temperature relaxation by reducing the laser fluence, or widening the pulse duration or increasing the laser wavelength. It was also found that there exists a transition between the two distinct thermionic emission regimes under peculiar laser parameters of laser fluence, pulse duration and laser wavelength. The results were explained as significant intervene of laser irradiation parameters into gold film thermal relaxation processes.  相似文献   

10.
The effect of fluence and pulse duration on the growth of nanostructures on chromium (Cr) surfaces has been investigated upon irradiation of femtosecond (fs) laser pulses in a liquid confined environment of ethanol. In order to explore the effect of fluence, targets were exposed to 1000 pulses at various peak fluences ranging from 4.7 to 11.8?J?cm–2 for pulse duration of ~25?fs. In order to explore the effect of pulse duration, targets were exposed to fs laser pulses of various pulse durations ranging from 25 to 100?fs, for a constant fluence of 11.8?J?cm–2. Surface morphology and structural transformations have been analyzed by scanning electron microscopy and Raman spectroscopy, respectively. After laser irradiation, disordered sputtered surface with intense melting and cracking is obtained at the central ablated areas, which are augmented with increasing laser fluence due to enhanced thermal effects. At the peripheral ablated areas, where local fluence is approximately in the range of 1.4–4?mJ?cm–2, very well-defined laser-induced periodic surface structures (LIPSS) with periodicity ranging from 270 to 370?nm along with dot-like structures are formed. As far as the pulse duration is concerned, a significant effect on the surface modification of Cr has been revealed. In the central ablated areas, for the shortest pulse duration (25?fs), only melting has been observed. However, LIPSS with dot-like structures and droplets have been grown for longer pulse durations. The periodicity of LIPSS increases and density of dot-like structures decreases with increasing pulse duration. The chemical and structural modifications of irradiated Cr have been revealed by Raman spectroscopy. It confirms the formation of new bands of chromium oxides and enol complexes or Cr-carbonyl compounds. The peak intensities of identified bands are dependent upon laser fluence and pulse duration.  相似文献   

11.
高勋  宋晓伟  林景全 《中国物理 B》2011,20(2):24210-024210
Thermal characteristics of tightly-contacted copper--gold double-layer thin film target under ablation of femtosecond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation shows that electron heat flux varies significantly on the boundary of copper--gold film with different maximal electron temperature of 1.15×103 K at 5 ps after ablating laser pulse in gold and copper films, which can reach a balance around 12.6 ps and 8.2 ps for a single and double pulse ablation, respectively, and in the meantime, the lattice temperature difference crossing the gold--copper interface is only about 0.04×103 K at the same time scale. It is also found that electron--lattice heat relaxation time increases linearly with laser fluence in both single and double pulse ablation, and a sudden change of the relaxation time appears after the laser energy density exceeds the ablation threshold.  相似文献   

12.
The electron temperature dependences of the electron-phonon coupling factor, electron heat capacity and thermal conductivity are investigated for Ni in a range of temperatures typically realized in femtosecond laser material processing applications, from room temperature up to temperatures of the order of 104 K. The analysis is based on the electronic density of states obtained through the electronic structure calculations. Thermal excitation of d band electrons is found to result in a significant decrease in the strength of the electron-phonon coupling, as well as large deviations of the electron heat capacity and the electron thermal conductivity from the commonly used linear temperature dependences on the electron temperature. Results of the simulations performed with the two-temperature model demonstrate that the temperature dependence of the thermophysical parameters accounting for the thermal excitation of d band electrons leads to higher maximum lattice and electron temperatures achieved at the surface of an irradiated Ni target and brings the threshold fluences for surface melting closer to the experimentally measured values as compared to the predictions obtained with commonly used approximations of the thermophysical parameters.  相似文献   

13.
飞秒超短脉冲激光加热金属平面靶   总被引:8,自引:1,他引:7  
刘智  李儒新  余玮  张正泉  徐至展 《光学学报》2000,20(10):297-1304
从能流分析出发,对飞秒超短脉冲激光与金属平面靶相互作用的机制进行了理论研究,对其中主要物理过程的能流损耗作了详尽的分析,并根据一维,双温热扩散模型推导了自由电子温度随时间变化的函数关系.并从理论上推导了超短脉冲近似假设成立的脉宽范围和在此条件下自由电子所能达到的最高温度表达式.  相似文献   

14.
Time-resolved femtosecond multicolor absorption spectroscopy of silver nanoparticle (NP) colloids with particle diameter in range of 10–30 nm is presented. The amplified femtosecond excitation of the surface plasmon resonance band resulted in transient absorption spectra reflecting the electron-phonon relaxation dynamics, which takes place on the early picosecond time scale. The monitored band with enhanced absorption in the 490–540 nm spectral range exhibited red-shift with increasing pump fluency from 0.4 mJ/cm2 to the 1.5 mJ/cm2 level. The growth of the relaxation time with increasing pump fluency reveals the temperature dependent relaxation dynamics caused by the nanometer sized electron confinement in the case of silver. This effect was confirmed also by identification of the relaxation time dependence on the particle diameter at constant pump fluency. The complex experimental results revealed nonlinearities both in the laser excitation and electron relaxation processes.  相似文献   

15.
We investigate the interaction of 100 fs laser pulses with metal targets at moderate intensities (1012 to 5 × 1013 W/cm2). To take into account effects of laser energy absorption and relaxation we develop a multi-material two-temperature model based on a combination of different approaches. The backbone of the numerical model is a high-order multi-material Godunov method in a purely Eulerian form. This formulation includes an interface-tracking algorithm and treats spallation at high strain rates and negative pressures. The model consistently describes the hydrodynamic motion of a two-temperature plasma and accounts for laser energy absorption, electron-phonon/ions coupling and electron heat conductivity. In particular, phase transitions are accurately taken into account by means of a wide-range two-temperature multi-phase equation of state in a tabular form. The dynamics of the phase transitions and the evolution of the heat-affected zone are modeled and analyzed. We have found that a careful treatment of the transport coefficients, as well as consideration of phase transitions is of a great importance in obtaining reliable numerical results. Calculation results are furthermore compared for two metals with different electron-phonon coupling parameters (Au and Al). We have found that the main part of ablated material results from fragmentation of melted phase caused by tensile stresses. A homogeneous nucleation mechanism alone does not explain experimentally observed ablation depth.  相似文献   

16.
Melting, vaporization and resolidification processes of thin gold film irradiated by a femtosecond pulse laser are studied numerically. The nonequilibrium heat transfer in electrons and lattice is described using a two-temperature model. The solid–liquid interfacial velocity, as well as elevated melting temperature and depressed solidification temperature, is obtained by considering the interfacial energy balance and nucleation dynamics. An iterative procedure based on energy balance and gas kinetics law to track the location of liquid–vapor interface is utilized to obtain the material removal by vaporization. The effect of surface heat loss by thermal radiation was discussed. The influences of laser fluence and duration on the evaporation process are studied. Results show that higher laser fluence and shorter laser pulse width lead to higher interfacial temperature, deeper melting and ablation depths.  相似文献   

17.
The electron temperature dependences of the electron–phonon coupling factor and electron heat capacity based on the electron density of states are investigated for precious metal Au under femtosecond laser irradiation. The thermal excitation of d band electrons is found to result in large deviations from the commonly used approximations of linear temperature dependence of the electron heat capacity, and the constant electron–phonon coupling factor. Results of the simulations performed with the two-temperature model demonstrate that the electron–phonon relaxation time becomes short for high fluence laser for Au. The satisfactory agreement between our numerical results and experimental data of threshold fluence indicates that the electron temperature dependence of the thermophysical parameters accounting for the thermal excitation of d band electrons should not be neglected under the condition that electron temperature is higher than 104 K.  相似文献   

18.
The numerical analysis is presented of the time evolution of the conduction electron temperature and of the hot LO-phonon population in polar semiconductors GaAs, CdTe and ZnS excited by a short laser pulse. The paper is based on the equations describing the evolution of the nonequilibrium electron-phonon system including the electron energy collision broadening and the electron screening of the electron-phonon interaction. The connection between the hot phonon population in the range of small values of the wave vector and the wave vector dependence of the screening function is pointed out.  相似文献   

19.
利用结合双温模型的分子动力学模拟方法,研究了飞秒激光与金属相互作用的烧蚀机制.采用中心波长为800 nm,能量密度从0.043 J·cm~(-2)到0.40 J·cm~(-2)不等,脉宽分别为70 fs和200 fs的激光烧蚀金属镍和铝材料.靶材的温度、原子位型以及内部压力随时间的演化展示了材料热物性参量特性和激光参量对烧蚀结果的影响.结果显示材料电子热传导率对飞秒脉宽激光下的影响仍然较大;对比铝和镍的结果可知,铝的电子晶格耦合系数比镍的小,故电子晶格间的温度梯度持续时间较长;铝的电子热传导系数比镍的大,所以材料上下表面电子温度耦合的时间缩短.铝薄膜表面在能量密度为0.40 J·cm~(-2)激光烧蚀下呈现纳米尺寸的晶体结构.  相似文献   

20.
Laser material processing of dielectrics with temporally asymmetric femtosecond laser pulses of identical fluence, spectrum, and statistical pulse duration is investigated experimentally. To that end single shot structures at the surface of fused silica as a function of fluence and pulse shape are analyzed with the help of scanning electron microscopy. Structures for the bandwidth limited pulses show the known expansion in structure size with increasing laser fluence approaching the diffraction limit, which is 1.4 μm for the 0.5NA microscope objective used. In contrast, structures from the asymmetric pulses are remarkably stable with respect to variations in laser fluence and stay below 300 nm despite doubling the fluence. Different thresholds for surface material modification with respect to an asymmetric pulse and its time reversed counterpart are attributed to control of different ionization processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号