首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Resonance Raman spectra were obtained for 2-hydroxybenzaldehyde (OHBA) in cyclohexane solution with excitation wavelengths in resonance with the first charge-transfer/proton-transfer (CT/PT) band absorption. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion predominantly along the nominal C=CH in-plane bend+ring deformation modes (nu9, nu10, nu14, nu16, nu18, nu19, nu20, nu26, nu30, nu31, and nu35) accompanied by a smaller amount of motion along the nominal C=O stretch mode (nu7), the nominal C=C-C(=O) in-plane bend modes (nu33 and nu37), and the nominal ring C-O-H in-plane bend modes (nu9 and nu14). A preliminary resonance Raman intensity analysis was done, and these results for the OHBA molecule were compared to results previously reported for the 2-hydroxyacetophenone (OHAP) molecule. Several proton-transfer tautomers in the ground and excited states were predicted from the results of B3LYP/cc-PVTZ, UB3LYP/cc-PVTZ, and CASSCF/cc-PVDZ level of theory computations. The differences and similarities between the CT/PT band resonance Raman spectra and the vibrational reorganizational energies for the OHBA molecule relative to those for the OHAP molecule are briefly discussed.  相似文献   

2.
Resonance Raman spectra were obtained for nitrobenzene in cyclohexane solution with excitation wavelengths in resonance with the charge-transfer (CT) band absorption spectrum. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion mainly along the nominal NO2 symmetric stretch mode (nu 11), the nominal benzene ring stretch mode (nu 7), accompanied by a moderate degree of motion along the nominal ONO symmetry bend/benzene ring stretch mode (nu 23), the nominal C-N stretch/benzene ring breathing mode (nu 16), the nominal CCC bending mode (nu 20) and the nominal CCH in-plane bending mode (nu 14). A preliminary resonance Raman intensity analysis was done and the results for nitrobenzene were compared to previously reported results for several nitroalkanes.  相似文献   

3.
The deprotonation of the push-pull molecule 4-hydroxy-4'-nitroazobenzene leads to a substantial variation in the charge distribution over the donor and acceptor moieties in the D-pi-azo-pi-A system. The extra charge stabilizes the excited state, leading to a drastic red shift of ca. 100 nm in the lambda max of the electronic transition and consequently causes significant changes in the resonance Raman enhancement profiles. In the neutral species the chromophore involves several modes, as nu(CN), nu(NN), and nu s(NO2), while in the anion the selective enhancement of the nu s(NO2) and nu(CO-) modes indicates a greater geometric variation of the NO2 and CO- moieties in the resonant excited electronic state. The interpretation of the electronic transitions and the vibrational assignment are supported by quantum-mechanical calculations, allowing a consistent analysis of the enhancement patterns observed in the resonance Raman spectra.  相似文献   

4.
A theory is developed for three-laser electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman scattering (CARS) spectroscopy of nitric oxide (NO). A vibrational Q-branch Raman polarization is excited in the NO molecule by the frequency difference between visible Raman pump and Stokes beams. An ultraviolet probe beam is scattered from the induced Raman polarization to produce an ultraviolet ERE-CARS signal. The frequency of the ultraviolet probe beam is selected to be in electronic resonance with rotational transitions in the A (2)Sigma(+)<--X (2)Pi (1,0) band of NO. This choice results in a resonance between the frequency of the ERE-CARS signal and transitions in the (0,0) band. The theoretical model for ERE-CARS NO spectra has been developed in the perturbative limit. Comparisons to experimental spectra are presented where either the probe laser was scanned with fixed Stokes frequency or the Stokes laser was scanned with fixed probe frequency. At atmospheric pressure and an NO concentration of 100 ppm, good agreement is found between theoretical and experimental spectral peak locations and relative intensities for both types of spectra. Factors relating to saturation in the experiments are discussed, including implications for the theoretical predictions.  相似文献   

5.
Resonance Raman study of free-base tetraphenylporphine and its dication   总被引:1,自引:0,他引:1  
Resonance Raman spectra of free-base tetraphenylporphine and its dication obtained with 441.6, 476.5, 488.0 and 514.5 nm excitation lines in the frequency region 100-1625 cm(-1) are reported. Some bands due to in-plane and out-of-plane vibrational modes, which are symmetry forbidden under ideal D(2h), are also seen in the Raman spectra of these molecules. These bands arise due to dynamic and/or static coupling of out-of-plane modes with the allowed in-plane modes. Dynamic coupling may be facilitated by the proton tunneling, while static coupling is due to out-of-plane distortion in the geometrical structure of the molecule. Shift in the positions for certain bands in the Raman spectra of dication are interpreted on the basis of electronic changes due to sharing of electrons of the B(1u) orbital by the two added protons.  相似文献   

6.
A series of poly(aryl ether) dendrimer chloroiron(III) porphyrin complexes (LnTPP)Fe(III)Cl (number of aryl layers [n]=3 to 5) were synthesized, and their Boltzmann temperatures under IR irradiation were evaluated from ratios of Stokes to anti-Stokes intensities of resonance Raman bands. While the Boltzmann temperature of neat solvent was unaltered by IR irradiation (LnTPP)Fe(III)Cl (n=3 to 5), all showed a temperature rise that was larger than that of the solvent and greater as the dendrimer framework was larger. Among vibrational modes of the metalloporphyrin core, the temperature rise of an axial Fe-Cl stretching mode at 355 cm-1 was larger than that for a porphyrin in-plane mode at 390 cm-1. Although most of the IR energy is captured by the phenyl nu8 mode at 1597 cm-1 of the dendrimer framework, an anti-Stokes Raman band of the phenyl nu8 mode was not detected, suggesting the extremely fast vibrational relaxation of the phenyl mode. From these observations, it is proposed that the energy of IR photons captured by the aryl dendrimer framework is transferred to the axial Fe-Cl bond of the iron porphyrin core and then relaxed to the porphyrin macrocycle.  相似文献   

7.
Femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) gives access to ultrafast molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this spectroscopy. However, it can be demonstrated that by shaping the femtosecond pulses a selective excitation of specific vibrational modes is possible. We demonstrate that using a feedback-controlled optimization technique, molecule-specific CARS spectra can be obtained from a mixture of different substances. A careful analysis of the experimental results points to a nontrivial control of the vibrational mode dynamics in the electronic ground state of the molecules as underlying mechanism.  相似文献   

8.
The utility of recording Raman spectroscopy under liquid nitrogen, a technique we call Raman under nitrogen (RUN), is demonstrated for ferrocene, uranocene, and thorocene. Using RUN, low-temperature (liquid nitrogen cooled) Raman spectra for these compounds exhibit higher resolution than previous studies, and new vibrational features are reported. The first Raman spectra of crystalline uranocene at 77 K are reported using excitation from argon (5145 A) and krypton (6764 A) ion lasers. The spectra obtained showed bands corresponding to vibrational transitions at 212, 236, 259, 379, 753, 897, 1500, and 3042 cm(-1), assigned to ring-metal-ring stretching, ring-metal tilting, out-of-plane CCC bending, in-plane CCC bending, ring-breathing, C-H bending, CC stretching and CH stretching, respectively. The assigned vibrational bands are compared to those of uranocene in THF, (COT)2-, and thorocene. All vibrational frequencies of the ligands, except the 259 cm(-1) out-of-plane CCC bending mode, were found to increase upon coordination. A broad, polarizable band centered about approximately 460 cm(-1) was also observed. The 460 cm(-1) band is greatly enhanced relative to the vibrational Raman transitions with excitations from the krypton ion laser, which is indicative of an electronic resonance Raman process as has been shown previously. The electronic resonance Raman band is observed to split into three distinct bands at 450, 461, and 474 cm(-1) with 6764 A excitation. Relativistic density functional theory is used to provide theoretical interpretations of the measured spectra.  相似文献   

9.
10.
The development of a time-resolved coherent anti-Stokes Raman scattering (CARS) variant for use as a probe of excited electronic state Raman-active modes following excitation with an ultrafast pump pulse is detailed. Application of this technique involves a combination of broadband fs-time scale pulses and a narrowband pulse of ps duration that allows multiplexed detection of the CARS signal, permitting direct observation of molecular Raman frequencies and intensities with time resolution dictated by the broadband pulses. Thus, this nonlinear optical probe, designated fs/ps CARS, is suitable for observation of Raman spectral evolution following excitation with a pump pulse. Because of the spatial separation of the CARS output signal relative to the three input beams inherent in a folded BOXCARS arrangement, this technique is particularly amenable to probing low-frequency vibrational modes, which play a significant role in accepting vibrational energy during intramolecular vibrational energy redistribution within electronically excited states. Additionally, this spatial separation allows discrimination against strong fluorescence signal, as demonstrated in the case of rhodamine 6G.  相似文献   

11.
The optical spectrum of Mn2+ in octahedral coordination for sursassite is characterized by well resolved bands at 580, 515, 470, 390, 340, and 295 nm (17240, 19420, 21280, 25640, 29410 and 33900 cm-1). Crystal field parameters evaluated from the observed bands are Dq=690, B=680 and C=2800 cm-1. A broad band centred around 13000 cm-1 attributed to Fe(III) ion is an impurity in sursassite confirmed from EDX analysis. Vibrational spectra have been investigated both by IR and Raman spectroscopy. The correlation between vibrational modes and the structural properties of the manganese silicate, sursassite, is made and compared with other silicates. Two vibrational modes of CO(3)2- observed; the antisymmetric stretching mode (nu3) at 1420 cm-1 (IR active) and the out-of-plane bending mode (nu2) (IR and Raman active) at approximately 875 cm-1. This confirms the Mn rich phases in sursassite as observed from SEM probably an Mn carbonate-rhodochrosite.  相似文献   

12.
The Cuban chromites with a spinel structure, FeCr2O4 have been studied using optical absorption and EPR spectroscopy. The spectral features in the electronic spectra are used to map the octahedral and tetrahedral co-ordinated cations. Bands due Cr3+ and Fe3+ ions could be distinguished from UV-vis spectrum. Chromite spectrum shows two spin allowed bands at 17,390 and 23,810 cm(-1) due to Cr3+ in octahedral field and they are assigned to 4A2g(F) --> 4T2g(F) and 4A2g(F) --> 4T1g(F) transitions. This is in conformity with the broad resonance of Cr3+ observed from EPR spectrum at g = 1.903 and a weak signal at g = 3.861 confirms Fe3+ impurity in the mineral. Bands of Fe3+ ion in the optical spectrum at 13,700, 18,870 and 28,570 cm(-1) are attributed to 6A1g(S) --> 4T1g(G), 6A1g(S) --> 4T2g(G) and 6A1g(S) --> 4T2g(P) transitions, respectively. Near-IR reflectance spectroscopy has been used effectively to show intense absorption bands caused by electronic spin allowed d-d transitions of Fe2+ in tetrahedral symmetry, in the region 5000-4000 cm(-1). The high frequency region (7500-6500 cm(-1)) is attributed to the overtones of hydroxyl stretching modes. Correlation between Raman spectral features and mineral chemistry are used to interpret the Raman data. The Raman spectrum of chromite shows three bands in the CrO stretching region at 730, 560 and 445 cm(-1). The most intense peak at 730 cm(-1) is identified as symmetric stretching vibrational mode, A1g(nu1) and the other two minor peaks at 560 and 445 cm(-1) are assigned to F2g(nu4) and E(g)(nu2) modes, respectively. Cation substitution in chromite results various changes both in Raman and IR spectra. In the low-wavenumber region of Raman spectrum a significant band at 250 cm(-1) with a component at 218 cm(-1) is attributed F2g(nu3) mode. The minor peaks at 195, 175, 160 cm(-1) might be due to E(g) and F2g symmetries. Broadening of the peak of A1g mode and shifting of the peak to higher wavenumber observed as a result of increasing the proportion of Al3+O6. The presence of water in the mineral shows bands in the IR spectrum at 3550, 3425, 3295, 1630 and 1455 cm(-1). The vibrational spectrum of chromite gives raise to four frequencies at 985, 770, 710 and 650 cm(-1). The first two frequencies nu1 and nu2 are related to the lattice vibrations of octahedral groups. Due to the influence of tetrahedral bivalent cation, vibrational interactions occur between nu3 and nu4 and hence the low frequency bands, nu3 and nu4 correspond to complex vibrations involving both octahedral and tetrahedral cations simultaneously. Cr3+ in Cuban natural chromites has highest CFSE (20,868 cm(-1)) when compared to other oxide minerals.  相似文献   

13.
Salient features of an in-depth comparative study of infrared and Raman spectra of CCl(4) in vapour, liquid and condensed phases are presented. Wavenumbers of nu(4), nu(1)+nu(4), nu(3) and 2 nu(3) modes of CCl(4) vapour in infrared and Raman spectra are found to be in good agreement. Analysis of the vibrational spectra of liquid CCl(4) together with the spectroscopic observations on solid CCl(4) at low temperatures reveal TD-TD interaction amongst various CCl(4) isotopes in condensed states. The concept of LO-TO splitting of dipole active nu(3) and nu(1)+nu(4) Fermi doublet have been invoked to explain several features of the vibrational spectra of liquid CCl(4). There is significant strengthening of Fermi resonance interaction between nu(3) and nu(1)+nu(4) modes of CCl(4) in condensed phases relative to that in vapour phase. The Fermi resonance interaction parameter W has been found to be independent of molecular environment.  相似文献   

14.
The ground state geometric, electronic structure and Raman spectra of 5,15-diphenylporphine (H(2)DPP) have been studied using B3LYP/6-31G(d) method and compared with that of well-studied free base porphine (H(2)P) and meso-tetraphenylporphine (H(2)TPP). Calculation shows that 5,15-substitution causes remarkable in-plane distortion, whereas the resulting out-of-plane distortion is negligible. The calculated electronic structure of H(2)DPP is consistent with the absorption spectra compared with H(2)P and H(2)TPP. The calculated vibrational frequencies of H(2)DPP scaled with a single factor of 0.971 agree well with experimental data (the rms error is 8.0 cm(-1)). The assignment of experimental Raman bands of H(2)DPP was discussed on the basis of theoretical calculation and the comparison with that of H(2)P and H(2)TPP. The splitting of some vibrational modes involving the motion of C(m) atom, such as nu(1), nu(8), and nu(10), was observed and was attributed to the diversification of the environment around C(m) atoms. As the shift of absorption peaks, the shift of some structure-sensitive Raman bands of H(2)DPP form that of H(2)TPP and H(2)P was attributed to the in-plane nuclear reorganization (IPNR) induced by phenyl-substitution, though the contribution of nonplanarity mechanism could not be excluded completely.  相似文献   

15.
The 2-diazo-5,5-dimethyl-cyclohexane-1,3-dione (3) was synthesized and the FT-IR/Raman spectra were measured with the purpose of obtain a full assignment of the vibrational modes. Singular aspects concerning the -CNN oscillator are discussed in view of two strong bands observed in the region of 2300-2100 cm(-1) in both, Infrared and Raman spectra. The density functional theory (DFT) was used to obtain the geometrical structure and for assisting in the vibrational assignment joint to the traditional normal coordinate analysis (NCA). The observed wavenumbers at 2145 (IR), 2144(R) are assigned as the coupled nu(NN)+nu(CN) vibrational mode with higher participation of the NN stretching. A 2188 cm(-1) (IR) and at 2186 cm(-1) (R) can be assigned as a overtone of one of nu(CC) normal mode or to a combination band of the fundamentals delta(CCH) found at 1169 cm(-1) and the delta (CCN) found at 1017 cm(-1) enhanced by Fermi resonance.  相似文献   

16.
A novel procedure is developed to describe and reproduce experimental coherent anti-Stokes Raman scattering (CARS) data, with particular emphasis on highly congested spectral regions. The approach, exemplified here with high-quality multiplex CARS data, makes use of spontaneous Raman scattering results. It is shown that the underlying vibrational Raman response can be retrieved from the multiplex CARS spectra, so that the Raman spectrum can be reconstituted, provided an adequate signal-to-noise ratio (SNR) is present in the experimental data and sufficient a priori knowledge of the vibrational resonances involved exists. The conversion of CARS to Raman data permits a quantitative interpretation of CARS spectra. This novel approach is demonstrated for highly congested multiplex CARS spectra of adenosine mono-, di-, and triphosphate (AMP, ADP, and ATP), nicotinamide adenine dinucleotide (NAD+), and small unilamellar vesicles (SUVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Quantitative determination of nucleotide concentrations and composition analysis in mixtures is demonstrated.  相似文献   

17.
Infrared and Raman spectra of 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) and 1,3,4,6-tetrathiapentalene-2,5-dione (TTP-DO) are reported. The vibrational modes of TTP-DO are assigned with the aid of the depolarization ratio of solution Raman spectra, polarized reflection spectra and polarized Raman spectra. A D2h symmetry is assumed for the BDT-TTP molecule and its in-plane fundamental vibrations are assigned with the aid of the polarization ratio and the correlation with TTP-DO, tetrathiafulvalene (TTF), tetramethyltetrathiafulvalene (TMTTF) and bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF). Normal coordinate calculation with a modified internal valence force field was carried out for the in-plane fundamental vibrations of TTP-DO and BDT-TTP. Ab initio calculations of the normal modes of BDT-TTP0 and BDT-TTP+ are compared with the empirical analysis.  相似文献   

18.
Resonance-enhanced coherent anti-Stokes Raman scattering (CARS) spectra are reported for light and dark adapted bacteriorhodopsin in aqueous solution in the nanosecond time range. Spectra have been obtained in the scanning as well as in the multiplex mode. Minor differences between the spectra obtained recently by the conventional resonance Raman and the present resonance CARS method are discussed.  相似文献   

19.
The title cobalt(III) complexes have been investigated by polarized absorption and Raman spectroscopies of the single crystals. The symmetry properties of the d-electron orbitals and of the vibrational modes attributable to the Raman bands of trans(Cl2)-[CoCl2(NH3)n(H2O)4−n]Cl complexes (n = 2, 3, or 4) were examined to elucidated the peculiar observation that ligand substitution causes no splitting of the 15 200-cm−1 absorption band and the 250-cm−1 Raman band. Effects of replacing the NH3 ligand with H2O on the electronic structure, atom–atom force constants and vibrational modes of these complex ions are briefly described.  相似文献   

20.
Low-frequency (80-700 cm-1) Qy-excitation resonance Raman (RR) spectra are reported for thin-solid-film aggregates of several chlorophyll (Chl) a and bacteriochlorophyll (BChl) c/d pigments. The pigments include Chl a, pyrochlorophyll a (PChl a), methylpyrochloropyllide a (MPChl a), methylbacteriochloropyllide d (MBChl d), [E,M] BChl cS, [E,E] BChl cF, and [P,E] BChl cF. The BChl c/d's are the principal constituents of the chlorosomal light-harvesting apparatus of green photosynthetic bacteria. Together, the various Chl a's and BChl c/d's represent a series in which the peripheral substituent groups on the chlorin macrocycle are varied in systematic fashion. All of the Chl a and BChl c/d aggregates exhibit rich low-frequency vibrational patterns. In the case of the BChl c/d's, certain modes in the very low-frequency region (100-200 cm-1) experience exceptionally strong Raman intensity enhancements. The frequencies of these modes are qualitatively similar to those of oscillations observed in femtosecond optical experiments on chlorosomes. The RR data indicate that the low-frequency vibrations are best characterized as intramolecular out-of-plane deformations of the chlorin macrocycle rather than intermolecular modes. The coupling of the out-of-plane modes in turn implies that the Qy electronic transition(s) of the aggregate have out-of-plane character. The RR spectra of the BChl c/d's also reveal that the nature of the alkyl substituents at the 8 and 12 positions of the macrocycle plays an important role in determining the detailed features of the low-frequency vibrational patterns. The frequencies of the modes are particularly sensitive to larger substituent groups whose conformations may be more easily perturbed in the tightly packed aggregates. These factors also make aggregates of pigments containing larger substituents more susceptible to structural, electronic, and vibrational inhomgeneities. Collectively, the RR studies of the various pigments delineate the factors which influence the low-frequency vibrational characteristics of chlorosomal aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号