首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel G-quadruplex DNAzyme-driven chemiluminescence (CL) imaging method was developed for ultrasensitive and specific detection of miRNA based on the cascade exponential isothermal amplification reaction (EXPAR) machinery. A structurally tailored hairpin probe switch was designed to selectively recognise miRNA and form hybridisation products to trigger polymerase and nicking enzyme machinery, resulting in the generation of product I, which was complementary to a region of the functional linear template. Then, the response of the functional linear template to the generated product I further activated the exponential isothermal amplification machinery, leading to synthesis of numerous horseradish peroxidase mimicking DNAzyme units for CL signal transduction. The amplification paradigm generated a linear response from 10 fM to 100 pM, with a low detection limit of 2.91 fM, and enabled discrimination of target miRNA from a single-base mismatched target. The developed biosensing platform demonstrated the advantages of isothermal, homogeneous, visual detection for miRNA assays, offering a promising tool for clinical diagnosis.  相似文献   

2.
Cheng D  Guo Y  Hsing IM 《The Analyst》2012,137(4):999-1004
In this study, we report a new immunoassay platform based on yeast surface display technology for detection of autoantibodies involved in autoimmune diseases, e.g., systemic lupus erythematosus (SLE) and Sj?gren's syndrome (SS). The autoantigens of Ro52/SSA epitope and SmD were chosen to be displayed on the yeast surface with their respective antibodies as the analytes. By using magnetic beads modified with protein G, yeast cells bound with specific target antibody can be captured. The amount of analytes could be determined by counting the number of fluorescent yeast cells captured in a magnetic field. The platform showed promising results in the detection of SLE autoantibodies with high sensitivity and multiplex detection capability over the traditional approaches.  相似文献   

3.
We have developed an amplified chemiluminescence turn-on sensing platform that relies on single-walled carbon nanotubes for ultrasensitive DNA detection. This new type of assay exhibits higher detection sensitivity over traditional biosensors by three orders of magnitude and high specificity for the target molecules.  相似文献   

4.
We propose the use of DNAzyme as a crosslinker of hydrogel to develop a catalytic platform for the sensing of metal ions. The DNAzyme crosslinked hydrogel can undergo gel-sol transition in response to Cu(2+) ions, which enables sensitive visual detection of Cu(2+) by observing the release of pre-trapped AuNPs.  相似文献   

5.
Coordination polymer colloids have been used as an effective fluorescent sensing platform for multiplexing nucleic acid detection capable of distinguishing complementary and mismatched target sequences for the first time.  相似文献   

6.
Glass-supported films of lipids and polydiacetylene were applied for visual detection and colorimetric fingerprinting of bacteria. The sensor films comprise polydiacetylene domains serving as the chromatic reporter interspersed within lipid monolayers that function as a biomimetic membrane platform. The detection schemes are based on either visible blue-red transitions or fluorescence transformations of polydiacetylene, induced by amphiphilic molecules secreted by proliferating bacteria. An important feature of the new film platform is the feasibility of either naked-eye detection of bacteria or color analysis using conventional scanners. Furthermore, we find that the degrees of bacterially induced color transformations depend both on the bacterial strains examined and the lipid compositions of the films. Accordingly, bacterial fingerprinting can be achieved through pattern recognition obtained by recording the chromatic transformations in an array of lipid/PDA films having different lipid components.  相似文献   

7.
A universal chirality detection platform based on immuno-recognition-driven nanoparticle assembly has been fabricated for the first time. A strong shifted chiral signal was produced by asymmetric plasmonic nanoparticle dimers. Using bisphenol A (BPA) as a model target substrate, the LOD was 0.02 ng mL(-1).  相似文献   

8.
We report a simple assay for visual detection of single nucleotide polymorphisms (SNPs) with good sensitivity and selectivity. The selectivity is determined by Escherichia coli (E. coli) DNA ligase mediated circular formation upon recognition of the point mutation on DNA targets. Rolling cycle amplification (RCA) of the perfect-matched DNA target is then initiated using the in situ formed circular template in the presence of Phi29 enzyme. Due to amplification of the DNA target, the RCA product has a tandem-repeated sequence, which is significantly longer than that for the SNP strand. Direct addition of a cationic conjugated polymer of poly[9,9'-bis(6'-(N,N,N-trimethylammonium)hexyl)fluorene-co-9,9'-bis(2-(2-(2-(N,N,N-trimethylammonium)ethoxyl)-ethoxy)-ethyl)fluorene tetrabromide] containing 20 mol% 2,1,3-benzothiadiazole (PFBT(20)) into the RCA solution leads to blue-whitish fluorescent color for SNP strand and yellowish fluorescent color for amplified DNA, due to PFBT(20)/DNA complexation induced intrachain/interchain energy transfer. To further improve the contrast for visual detection, FAM-labeled peptide nucleic acid (PNA) was hybridized to each amplified sequence, which is followed by the addition of poly{2,7-[9,9-bis(6'-N,N,N-trimethylammoniumhexyl)]fluorene-co-2,5-difluoro-1,4-phenylene dibromide} (PFP). The PNA/DNA hybridization brings PFP and FAM-PNA into close proximity for energy transfer, and the solution fluorescent color appears green in the presence of target DNA with a detection limit of 1 nM, which is significantly improved as compared to that for most reported visual SNP assay.  相似文献   

9.
Based on the super fluorescence quenching efficiency of graphene oxide and exonuclease III aided signal amplification, we develop a facile, sensitive, rapid and cost-effective method for DNA detection. In the presence of target DNA, the target-probe hybridization forms a double-stranded structure and exonuclease III catalyzes the stepwise removal of mononucleotides from the blunt 3′ termini of probe, resulting in the recycling of the target DNA and signal amplification. Therefore, our proposed sensor exhibits a high sensitivity towards target DNA with a detection limit of 20 pM, which was even lower than previously reported GO-based DNA sensors without enzymatic amplification, and provides a universal sensing platform for sensitive detection of DNA.  相似文献   

10.
Lien KY  Chuang YH  Hung LY  Hsu KF  Lai WW  Ho CL  Chou CY  Lee GB 《Lab on a chip》2010,10(21):2875-2886
The present study reports a new three-dimensional (3D) microfluidic platform capable of rapid isolation and detection of cancer cells from a large sample volume (e.g. ~1 mL) by utilizing magnetic microbead-based technologies. Several modules, including a 3D microfluidic incubator for the magnetic beads to capture cancer cells, a microfluidic control module for sample transportation and a nucleic acid amplification module for genetic identification, are integrated into this microsystem. With the incorporation of surface-modified magnetic beads, target cancer cells can be specifically recognized and conjugated onto the surface of the antibody-coated magnetic microbeads by utilizing a swirling effect generated by the new 3D microfluidic incubator, followed by isolating and purifying the magnetic complexes via the incorporation of an external magnet and a microfluidic control module, which washes away any unbound waste solution. Experimental results show that over 90% of the target cancer cells can be isolated from a large volume of bio-samples within 10 min in the 3D microfluidic incubator. In addition, the expressed genes associated with ovarian and lung cancer cells can also be successfully amplified by using the on-chip nucleic acid amplification module. More importantly, the detection limit of the developed system is found to be 5 × 10(1) cells mL(-1) for the target cancer cells, indicating that this proposed microfluidic system may be adapted for clinical use for the early detection of cancer cells. Consequently, the proposed 3D microfluidic system incorporated with immunomagnetic beads may provide a promising automated platform for the rapid isolation and detection of cancer cells with a high sensitivity.  相似文献   

11.
TD Rane  HC Zec  C Puleo  AP Lee  TH Wang 《Lab on a chip》2012,12(18):3341-3347
In this article we present a novel droplet microfluidic chip enabling amplification-free detection of single pathogenic cells. The device streamlines multiple functionalities to carry out sample digitization, cell lysis, probe-target hybridization for subsequent fluorescent detection. A peptide nucleic acid fluorescence resonance energy transfer probe (PNA beacon) is used to detect 16S rRNA present in pathogenic cells. Initially the sensitivity and quantification abilities of the platform are tested using a synthetic target mimicking the actual expression level of 16S rRNA in single cells. The capability of the device to perform "sample-to-answer" pathogen detection of single cells is demonstrated using E. coli as a model pathogen.  相似文献   

12.
A novel method for the detection of PDGF-BB has been developed using double-strand DNA-copper nanoparticles (dsDNA-CuNPs) as fluorescent markers. This assay relies on the premise that the aptamer- based probe undergoes a conformational change upon binding with target protein, and subsequently triggers polymerization reaction to generate dsDNA. Then, the resultant dsDNA can be used as a template for the formation of CuNPs with high fluorescence. Under the optimized conditions, the proposed assay allowed sensitive and selective detection of PDGF-BB with a detection limit of 4 nmol/L. This possibly makes it an attractive platform for the detection of a variety of biomolecules whose aptamers undergo similar conformational change.  相似文献   

13.
A rapid label-free visual assay for the detection of viral RNA using peptide nucleic acid (PNA) probes and gold nanoparticles (AuNPs) is presented in this study. Diagnosis is a crucial step for the molecular surveillance of diseases, and a rapid visual test with high specificity could play a vital role in the management of viral diseases. In this assay, the specific agglomerative behavior of PNA with gold nanoparticles was manipulated by its complementation with viral RNA. The assay was able to detect 5–10 ng of viral RNA from various biological samples, such as allantoic fluids, cell culture fluids and vaccines, in 100 μl of test solution. The developed assay was more sensitive than a hemagglutination (HA) test, a routine platform test for the detection of Newcastle disease virus (NDV), and the developed assay was able to visually detect NDV with as little as 0.25 HA units of virus. In terms of the specificity, the test could discriminate single nucleotide differences in the target RNA and hence could provide visual viral genotyping/pathotyping. This observation was confirmed by pathotyping different known isolates of NDV. Further, the PNA-induced colorimetric changes in the presence of the target RNA at different RNA to PNA ratios yielded a standard curve with a linear coefficient of R2 = 0.990, which was comparable to the value of R2 = 0.995 from real-time PCR experiments with the same viral RNA. Therefore, the viral RNA in a given samples could be quantified using a simple visual spectrophotometer available in any clinical laboratory. This assay may find application in diagnostic assays for other RNA viruses, which are well known to undergo mutations, thus presenting challenges for their molecular surveillance, genotyping and quantification.  相似文献   

14.
A generic fluorescence sensing platform for analyzing DNA by the Zn(2+)-dependent ligation DNAzyme as amplifying biocatalyst is presented. The platform is based on the target DNA induced ligation of two substrate subunits and the subsequent opening of a beacon hairpin probe by the ligated product. The strand displacement of the ligated product by the beacon hairpin is, however, of limited efficiency. Two strategies are implemented to overcome this limitation. By one method, a "helper" nucleic acid sequence is introduced into the system, and this hybridizes with the DNAzyme components and releases the ligated product for opening of the hairpin. By the second method, a nicking enzyme (Nt.BspQI) is added to the system, and this nicks the duplex between the beacon and ligated product while recycling the free ligation product. By combining the two coadded components ("helper" sequence and nicking enzyme), the sensitive detection of the analyte is demonstrated (detection limit, 20 pM). The enzyme-free amplified fluorescence detection of the target DNA is further presented by the Zn(2+)-dependent ligation DNAzyme-driven activation of the Mg(2+)-dependent DNAzyme. According to this method, the Mg(2+)-dependent DNAzyme subunits displace the ligated product, and the resulting assembled DNAzyme cleaves a fluorophore/quencher-modified substrate to yield fluorescence. The method enabled the detection of the target DNA with a detection limit corresponding to 10 pM. The different sensing platforms are implemented to detect the Tay-Sachs genetic disorder mutant.  相似文献   

15.
Li H  Sun X 《Analytica chimica acta》2011,702(1):109-113
In this paper, we report on the use of 3,4,9,10-perylenetetracarboxylic diimide microfibers (PDIMs) as an effective fluorescent sensing platform for DNA detection for the first time. This sensing system exhibits a detection limit as low as 15 nmol L−1 and has a high selectivity down to single-base mismatch. The general concept used in this approach is based on adsorption of fluorescently labeled single-stranded DNA (ssDNA) probe by PDIM due to the strong π–π stacking between unpaired DNA bases and PDIM. As a result, the fluorophore is brought into close proximity of PDIM, leading to substantial fluorescence quenching. In the presence of the target, the specific hybridization of the probe with its complementary DNA sequence generates a double stranded DNA (dsDNA) which detaches from PDIM, leading to fluorescence recovery. Its generality of this sensing platform for protein detection is also demonstrated.  相似文献   

16.
We describe a DNA microarray system using a bipolar integrated circuit photodiode array (PDA) chip as a new platform for DNA analysis. The PDA chip comprises an 8 × 6 array of photodiodes each with a diameter of 600 μm. Each photodiode element acts both as a support for an immobilizing probe DNA and as a two-dimensional photodetector. The usefulness of the PDA microarray platform is demonstrated by the detection of high-risk subtypes of human papilloma virus (HPV). The polymerase chain reaction (PCR)-amplified biotinylated HPV target DNA was hybridized with the immobilized probe DNA on the photodiode surface, and the chip was incubated in an anti-biotin antibody-conjugated gold nanoparticle solution. The silver enhancement by the gold nanoparticles bound to the biotin of the HPV target DNA precipitates silver metal particles at the chip surfaces, which block light irradiated from above. The resulting drop in output voltage depends on the amount of target DNA present in the sample solution, which allows the specific detection and the quantitative analysis of the complementary target DNA. The PDA chip showed high relative signal ratios of HPV probe DNA hybridized with complementary target DNA, indicating an excellent capability in discriminating HPV subtypes. The detection limit for the HPV target DNA analysis improved from 1.2 nM to 30 pM by changing the silver development time from 5 to 10 min. Moreover, the enhanced silver development promoted by the gold nanoparticles could be applied to a broader range of target DNA concentration by controlling the silver development time. Figure An optical image of the PDA chip and target DNA detection through silver enhancement Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Human Mammary Tumor Virus (HMTV) or Mouse Mammary Tumor Virus holds similarity as an endogenous onco-retrovirus belongs to retroviridae family, predominantly infects the epithelial cell of human as well as mouse. With the recognition of nano-biosensor in nanotechnology, ideal interdigitated electrode (IDE) was genuinely performed for HMTV detection. Aluminium enriched IDE (AlIDE) was fabricated for high performance detection with a cost-effective photolithography technique. In this research, (3-glycidyloxypropyl) trimethoxysilane refined platform was selected to detect the conductivity with HMTV target DNA interaction on the designed AlIDE. Strong binding affinity of streptavidin-biotin with target DNA enhanced the sensitivity by empowering higher number of HMTV probe and target complementation on sensing surface. Furthermore, the target DNA was immobilized on probe modified AlIDE and a quantitative value of 100 aM attained as a lowest detection. A linear with dose-dependent duplex formation was shown with the regression coefficient value of 0.964. Negative control has shown insignificant detection at 10 pM, which justifies the higher fold discrimination with specificity. The excellence of AlIDE performance in detection of HMTV may pave the way for more verification on other diseases.  相似文献   

18.
Metal-organic frameworks (MOFs) have emerged as very fascinating functional materials due to their tunable nature and diverse applications. In this work, we prepared a magnetic porous carbon (MPC) nanocomposite by employing iron-containing MOFs (MIL-88A) as precursors through a one-pot thermolysis method. It was found that the MPC can absorb selectively single-stranded DNA (ssDNA) probe to form MPC/ssDNA complex and subsequently quench the labelled fluorescent dye of the ssDNA probe, which is resulted from the synergetic effect of magnetic nanoparticles and carbon matrix. Upon the addition of complementary target DNA, however, the absorbed ssDNA probe could be released from MPC surface by forming double-stranded DNA with target DNA, and accompanied by the recovery of the fluorescence of ssDNA probe. Based on these findings, a sensing platform with low background signal for DNA fluorescent detection was developed. The proposed sensing platform exhibits high sensitivity with detection limit of 1 nM and excellent selectivity to specific target DNA, even single-base mismatched nucleotide can be distinguished. We envision that the presented study would provide a new perspective on the potential applications of MOF-derived nanocomposites in biomedical fields.  相似文献   

19.
We report a novel plastic biochip for the sensitive colorimetric detection of analytes of interest. This type of biochip is designed to perform bioassays in a sandwich format, i.e., employing the immobilized probe molecules to capture target and then utilizing gold nanoparticle (AuNP)-labeled reporters to screen the biorecognition events. To fabricate and implement such plastic biochips, not only have we demonstrated the probe immobilization, sensor unit formation, signal transduction and visualization on the plastic substrate, but we have also introduced new methods for imaging and analysis of them. As two proof-of-concept detection applications, plastic immunochips and DNA biochips have been fabricated and their responses to human IgG and DNA have been examined respectively. To further assess the detection sensitivity of the colorimetric-based biochip, we have compared it with an enzyme-catalyzed-based biochip and with a conventional fluorescent-based biochip. We believe the colorimetric-based plastic biochip presented herein is able to fully combine the advantage of colorimetric detection and plastic substrate, thus making it an ideal platform for point-of-care analysis and diagnostics.  相似文献   

20.
In this communication, we demonstrate for the first time the proof of concept that carbon nanoparticles (CNPs) can be used as an effective fluorescent sensing platform for nucleic acid detection with selectivity down to single-base mismatch. The dye-labeled single-stranded DNA (ssDNA) probe is adsorbed onto the surface of the CNP via π-π interaction, quenching the dye. In the target assay, a double-stranded DNA (dsDNA) hybrid forms, recovering dye fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号