首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The novel bridged nucleic-acid analogue 2',4'-BNA(NC) (2'-O,4'-C-aminomethylene bridged nucleic acid), containing a six-membered bridged structure with an N-O linkage, was designed and synthesized efficiently, demonstrating a one-pot intramolecular NC bond-forming key reaction to construct a perhydro-1,2-oxazine ring (11 and 12). Three monomers of 2',4'-BNA(NC) (2',4'-BNA(NC)[NH], [NMe], and [NBn]) were synthesized and incorporated into oligonucleotides, and their properties were investigated and compared with those of 2',4'-BNA (LNA)-modified oligonucleotides. Compared to 2',4'-BNA (LNA)-modified oligonucleotides, 2',4'-BNA(NC) congeners were found to possess: (i) equal or higher binding affinity against an RNA complement with excellent single-mismatch discriminating power, (ii) much better RNA selective binding, (iii) stronger and more sequence selective triplex-forming characters, and (iv) immensely higher nuclease resistance, even higher than the S(p)-phosphorthioate analogue. 2',4'-BNA(NC)-modified oligonucleotides with these excellent profiles show great promise for applications in antisense and antigene technologies.  相似文献   

2.
Four classes of benzylidene acetal type bridged nucleic acids (BA-BNAs) were designed with 2',4'-bridged structures that cleaved upon exposure to appropriate external stimuli. Cleavage of 6-nitroveratrylidene and 2-nitrobenzylidene acetal type BNA bridges occurred upon photoirradiation and subsequent treatment with thiol caused changes in secondary structure to afford 4'-C-hydroxymethyl RNA. Benzylidene and 4-nitrobenzylidene acetal type BNA responded to acids and reducing agents, respectively, resulting in hydrolysis of the acetal-bridged structure. Cleavage of the bridge removed sugar conformational restrictions and changed the duplex- and triplex-forming properties of the BNA-modified oligonucleotides. Moreover, oligonucleotides incorporating a single BA-BNA modification had considerably improved stability toward 3'-exonuclease, which was lost upon cleavage of the bridge. Thus, these new BNAs may be useful as therapeutic and detection tools by sensing various environments.  相似文献   

3.
We have used a photocaging strategy to develop novel phosphoramidites and expand the repertoire of protecting groups for modification of oligonucleotides by solid-phase synthesis. We synthesised five photolabile phosphoramidites and four new photolabile controlled pore glasses (CPGs). By using these photolabile phosphoramidites and CPGs, modified oligodeoxynucleotides (ODNs) with phosphate, amine, acid, thiol and carbonyl moieties at 5' and/or 3' ends were readily synthesised. To the best of our knowledge, this is the first report of introducing a carbonyl at the 5' end and thiol groups at both ends of ODNs with photolabile modifiers. Terminal labelling was also easily realised in solution or by on-column solid-phase synthesis. By using the photolabile amine modifier and the photolabile acid CPG, cyclisation of an oligodeoxynucleotide was achieved with good yields. This study provides an alternative way to introduce functional groups into oligonucleotides and expand the scope of oligonucleotide bio-orthogonal labelling.  相似文献   

4.
The phosphoramidite (1S,3R,4S)-3-(2-cyanoethoxy(diisopropylamino)phosphinoxymethyl)-5-N-(4-monomethoxytrityl)-1-(uracil-1-yl)-5-aza-2-oxabicyclo[2.2.1]heptane 18 of a novel bicyclic nucleoside structure was synthesized from the known 1-(3'-deoxy-beta-D-psicofuranosyl)uracil 3. Conformational analysis of its structure verified its expected S-type furanose conformation, and the secondary amino group in the 4'-position allowed for incorporation into oligonucleotides using 5' --> 3' directed oligonucleotide synthesis as previously described for phosphoramidates. Thermal denaturation studies showed rather large decreases in duplex stabilities of -4.3 and -2.7 degrees C per modification toward complementary DNA and RNA, respectively.  相似文献   

5.
In the last decade, increased efforts have been directed toward the development of oligonucleotide-based technologies for genome analyses, diagnostics, or therapeutics. Among them, an antigene strategy is one promising technology to regulate gene expression in living cells. Stable triplex formation between the triplex-forming oligonucleotide (TFO) and the target double-stranded DNA (dsDNA) is fundamental to the antigene strategy. However, there are two major drawbacks in triplex formation by a natural TFO: low stability of the triplex and limitations of the target DNA sequence. To overcome these problems, we have developed various bridged nucleic acids (BNAs), and found that the 2',4'-BNA modification of oligonucleotides strongly promotes parallel motif triplex formation under physiological conditions. Some nucleobase analogues to extend the target DNA sequence were designed, synthesized, and introduced into the 2',4'-BNA structure. The obtained 2',4'-BNA derivatives with unnatural nucleobases effectively recognized a pyrimidine-purine interruption in the target dsDNA. Some other examples of nucleic acid analogues for stable triplex formation and extension of the target DNA sequence are also summarized.  相似文献   

6.
[structure: see text] Oligonucleotides with a novel 2'-O-[2-(guanidinium)ethyl] (2'-O-GE) modification have been synthesized using a novel protecting group strategy for the guanidinium group. This modification enhances the binding affinity of oligonucleotides to RNA as well as duplex DNA (DeltaT(m) 3.2 degrees C per modification). The 2'-O-GE modified oligonucleotides exhibited exceptional resistance to nuclease degradation. The crystal structure of a palindromic duplex formed by a DNA oligonucleotide with a single 2'-O-GE modification was solved at 1.16 A resolution.  相似文献   

7.
Bulge insertions of (R)-1-O-[4-(1-pyrenylethynyl)phenylmethyl]glycerol (5) into the middle of homopyrimidine oligodeoxynucleotides (twisted intercalating nucleic acids, TINA) obtained via postsynthetic Sonogashira coupling reaction led to extraordinary high thermal stability of Hoogsteen-type triplexes and duplexes, whereas Watson-Crick-type duplexes of the same nucleotide content were destabilized. Modified oligonucleotides were synthesized using the phosphoramidite of (S)-1-(4,4'-dimethoxytriphenylmethyloxy)-3-(4-iodo-benzyloxy)-propan-2-ol followed by treatment of the oligonucleotide on a CPG-support with the Sonogashira-coupling reaction mixture containing different ethynylaryls. Bulged insertion of the pyrene derivative 5 into oligonucleotides was found to be the best among the tested modifications for binding to the Hoogsteen-type triplexes and duplexes. Thus, at pH 7.2 an oligonucleotide with cytidine content of 36% possessing two bulged insertions of 5 separated by three bases formed a stable triplex (T(m) = 43.0 degrees C), whereas the native oligonucleotide was unable to bind to the target duplex. The corresponding Watson-Crick-type duplex with the same oligonucleotide had T(m) of 38.0 degrees C at pH 7.2, while the T(m) of unmodified dsDNA was 47.0 degrees C. Experiments with mismatched oligonucleotides, luminescent properties, and potential applications of TINA technology is discussed.  相似文献   

8.
The crystal structure of a decameric HNA/RNA (HNA = 2',3'-dideoxy-1',5'-anhydro-d-arabinohexitol nucleic acid) hybrid with the RNA sequence 5'-GGCAUUACGG-3' is the first crystal structure of a hybrid duplex between a naturally occurring nucleic acid and a strand, which is fully modified to contain a six-membered ring instead of ribose. The presence of four duplex helices in the asymmetric unit allows for a detailed discussion of hydration, which revealed a tighter spinelike backbone hydration for the HNA- than for the RNA-strands. The reinforced backbone hydration is suggested to contribute significantly to the exceptional stability of HNA-containing duplexes and might be one of the causes for the evolutionary preference for ribose-derived nucleic acids.  相似文献   

9.
To expand the sequence of double-stranded DNA (dsDNA) targets in a triplex formation, 2',4'-BNAs (2'-O,4'-C-methylene bridged nucleic acids) having imidazoles as a nucleobase were synthesized and incorporated into oligonucleotides. Triplex-forming ability of the modified oligonucleotides was evaluated by using melting temperature (Tm) measurements.  相似文献   

10.
Several amino acid phosphorodiamidate derivatives of d4T as anti-HIV prodrugs were synthesized and investigated using electrospray ionization multistage tandem mass spectrometry (ESI-MS(n)). A novel methyl group migration in gas phase was observed in ESI-MS(2) of the sodium adducts of amino acid methyl ester of phosphorodiamidates of 2',3'-didehydro-2',3'-dideoxythymidine (d4T). The proposed structures of the rearrangement ions were confirmed by high resolution tandem mass spectrometry. A possible mechanism involving the pentacoordinate phosphoric-carboxylic phosphate anhydride was proposed, in which a seven-membered ring intermediate was formed by coordination with the metal ion between the phosphoryl group and carbonyl oxygen atom. Thus, the intrinsic properties of phosphoryl group might be the key factors responsible for this migration.  相似文献   

11.
A sequence of double-stranded DNA (dsDNA) which can be recognized by a triplex-forming oligonucleotide (TFO) is limited to a homopurine-homopyrimidine sequence. To develop novel nucleoside analogues which recognize CG interruption in homopurine-homopyrimidine dsDNA, we synthesized a novel 2'-O,4'-C-methyleneribonucleic acid (2'-O,4'-C-methylene bridged nucleic acid; 2',4'-BNA) that bears the unnatural nucleobases, 2-pyridone (PB) or its 5-methyl congener (mPB); these analogues were introduced into pyrimidine TFOs using a DNA synthesizer. A TFO with a 2'-deoxy-beta-D-ribofuranosyl-2-pyridone (P) or 2',4'-BNA abasic monomer (HB) was also synthesized. The triplex-forming ability of various synthesized 15-mer TFOs and the corresponding homopurine-homopyrimidine dsDNA, which contained a single pyrimidine-purine (PyPu) interruption, was examined in UV melting experiments. It was found that PB and mPB in the TFOs successfully recognized CG interruption under physiological conditions (7 mM sodium phosphate, 140 mM KCl, 5 mM spermine, pH 7.0). Furthermore, triplex formation between the dsDNA target which contained three CG interruptions and the TFO with three PB units was also confirmed. Additional four-point 2',4'-BNA modifications of the TFO containing three PB units significantly enhanced its triplex-forming ability towards the dsDNA and had a Tm value of 43 degrees C under physiological conditions. These results indicate that a critical inherent problem of TFOs, namely, the sequence limitation of the dsDNA target, may be overcome to a large extent and this should promote antigene applications of TFOs in vitro and in vivo.  相似文献   

12.
Peptide nucleic acids (PNAs) are DNA/RNA mimics which have recently generated considerable interest due to their potential use as antisense and antigene therapeutics and as diagnostic and molecular biology tools. These synthetic biomolecules were designed with improved properties over corresponding oligonucleotides such as greater binding affinity to complementary nucleic acids, enhanced cellular uptake, and greater stability in biological systems. Because of the stability and unique structure of PNAs, traditional sequence confirmation methods are not effective. Alternatively, electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry shows great potential as a tool for the characterization and structural elucidation of these oligonucleotide analogs. Extensive gas-phase fragmentation studies of a mixed nucleobase 4-mer (AACT) and a mixed nucleobase 4-mer with an acetylated N-terminus (N-acetylated AACT) have been performed. Gas-phase collision-induced dissociation of PNAs resulted in water loss, cleavage of the methylene carbonyl linker containing a nucleobase, cleavage of the peptide bond, and the loss of nucleobases. These studies show that the fragmentation behavior of PNAs resembles that of both peptides and oligonucleotides. Molecular mechanics (MM+), semiempirical (AM1), and ab initio (STO-3G) calculations were used to investigate the site of protonation and determine potential low energy conformations. Computational methods were also employed to study prospective intramolecular interactions and provide insight into potential fragmentation mechanisms.  相似文献   

13.
Heterocyclic aromatic amines (HAAs) generated during the cooking of meats are known to be genotoxic substances able to form covalent bonds with DNA bases after metabolic activation. This work aimed at the investigation of the influence of the local environment of nucleobases along the nucleotidic sequence on its modification induced by two different HAAs, namely 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), in order to identify possible sequences more susceptible to modification. A systematic study of the neighbouring base effect on the adduction was emphasized. Thus, PhIP and IQ adducts have been synthesized with various T-rich model single-strand oligonucleotides displaying different flanking bases (A, G, C or T) at the 3' or the 5' side of the targeted guanine, which allowed a comparison of the flanking base effects on adduction. Modified oligonucleotides were then analyzed by high-performance liquid chromatography (HPLC) coupled to electrospray ionization mass spectrometry. The localization of the modifications induced by PhIP or IQ along the oligonucleotide sequence was achieved by tandem mass spectrometry, and modification yields of the various model sequences were compared. Results indicate a favouring sequence context effect on the G-C8-IQ adduct formation with the sequence 5'GGG3'. Although higher than IQ, modification yields observed with PhIP showed a less obvious effect of the neighbouring base on the G-C8-PhIP adduct formation, with a preferential sequence 5'GGA/G/T3'.  相似文献   

14.
Locked nucleic acid (LNA) is a deoxyribonucleotide analogue with an unusual ‘locked’ furanose conformation. LNA-modified oligonucleotide probes have demonstrated an enhanced binding affinity towards their complementary strands; however, their potential to discriminate non-complementary hybridization of mismatches has not been explored. In this study, we investigated the effect of the chemical nature of LNA nucleobases on the hybridization stability and the capability of LNA-modified oligonucleotides to discriminate the LNA:DNA mismatched base pairs. It was observed that LNA modification indeed improves the discrimination capability of oligonucleotides by increasing the melting temperature differences between the complementary duplexes and hybrids containing mismatches. Particularly, LNA purines offer a greater potential to recognize the mismatches than LNA pyrimidines and DNA purines. Real-time PCR experiments further confirmed that LNA modifications at the 3′-end are more effective. The results and conclusions in this study provide useful information for hybridization-based nucleic acid analysis where designing sound oligonucleotide probes is crucial to the success of the analyses.   Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
We show for the first time that it is possible to obtain LNA-like (Locked Nucleic Acid 1) binding affinity and biological activity with carbocyclic LNA (cLNA) analogs by replacing the 2'-oxygen atom in LNA with an exocyclic methylene group. Synthesis of the methylene-cLNA nucleoside was accomplished by an intramolecular cyclization reaction between a radical at the 2'-position and a propynyl group at the C-4' position. Only methylene-cLNA modified oligonucleotides showed similar thermal stability and mismatch discrimination properties for complementary nucleic acids as LNA. In contrast, the close structurally related methyl-cLNA analogs showed diminished hybridization properties. Analysis of crystal structures of cLNA modified self-complementary DNA decamer duplexes revealed that the methylene group participates in a tight interaction with a 2'-deoxyribose residue of the 5'-terminal G of a neighboring duplex, resulting in the formation of a CH...O type hydrogen bond. This indicates that the methylene group retains a negative polarization at the edge of the minor groove in the absence of a hydrophilic 2'-substituent and provides a rationale for the superior thermal stability of this modification. In animal experiments, methylene-cLNA antisense oligonucleotides (ASOs) showed similar in vivo activity but reduced toxicity as compared to LNA ASOs. Our work highlights the interchangeable role of oxygen and unsaturated moieties in nucleic acid structure and emphasizes greater use of this bioisostere to improve the properties of nucleic acids for therapeutic and diagnostic applications.  相似文献   

16.
Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.  相似文献   

17.
[structure: see text] Oligonucleotides with a novel, 2'-O-[2-[2-(N,N-dimethylamino)ethoxy]ethyl] (2'-O-DMAEOE) modification have been synthesized. This modification, a cationic analogue of the 2'-O-(2-methoxyethyl) (2'-O-MOE) modification, exhibits high binding affinity to target RNA (but not to DNA) and exceptional resistance to nuclease degradation. Analysis of the crystal structure of a self-complementary oligonucleotide containing a single 2'-O-DMAEOE modification explains the importance of charge factors and gauche effects on the observed antisense properties. 2'-O-DMAEOE modified oligonucleotides are ideal candidates for antisense drugs.  相似文献   

18.
Oligonucleotide chemistry has been developed greatly over the past three decades, with many advances in increasing nuclease resistance, enhancing duplex stability and assisting with cellular uptake. Locked nucleic acid (LNA) is a structurally rigid modification that increases the binding affinity of a modified-oligonucleotide. In contrast, unlocked nucleic acid (UNA) is a highly flexible modification, which can be used to modulate duplex characteristics. In this tutorial review, we will compare the synthetic routes to both of these modifications, contrast the structural features, examine the hybridization properties of LNA and UNA modified duplexes, and discuss how they have been applied within biotechnology and drug research. LNA has found widespread use in antisense oligonucleotide technology, where it can stabilize interactions with target RNA and protect from cellular nucleases. The newly emerging field of siRNAs has made use of LNA and, recently, also UNA. These modifications are able to increase double-stranded RNA stability in serum and decrease off-target effects seen with conventional siRNAs. LNA and UNA are also emerging as versatile modifications for aptamers. Their application to known aptamer structures has opened up the possibility of future selection of LNA-modified aptamers. Each of these oligonucleotide technologies has the potential to become a new type of therapy to treat a wide variety of diseases, and LNA and UNA will no doubt play a part in future developments of therapeutic and diagnostic oligonucleotides.  相似文献   

19.
BACKGROUND: Phosphoramidate oligonucleotide analogs containing N3'-P5' linkages share many structural properties with natural nucleic acids and can be recognized by some RNA-binding proteins. Therefore, if the N-P bond is resistant to nucleolytic cleavage, these analogs may be effective substrate analog inhibitors of certain enzymes that hydrolyze RNA. We have explored the ability of the Tetrahymena group I intron ribozyme to bind and cleave DNA and RNA phosphoramidate analogs. RESULTS: The Tetrahymena group I ribozyme efficiently binds to phosphoramidate oligonucleotides but is unable to cleave the N3'-P5' bond. Although it adopts an A-form helical structure, the deoxyribo-phosphoramidate analog, like DNA, does not dock efficiently into the ribozyme catalytic core. In contrast, the ribo-phosphoramidate analog docks similarly to the native RNA substrate, and behaves as a competitive inhibitor of the group I intron 5' splicing reaction. CONCLUSIONS: Ribo-N3'-P5' phosphoramidate oligonucleotides are useful tools for structural and functional studies of ribozymes as well as protein-RNA interactions.  相似文献   

20.
分别采用格氏试剂和三氯化磷三步取代法合成了4个新的烷基修饰磷酸残基的亚磷酸酰胺单体, 其结构经1H NMR和31P NMR表征. 利用这些单体合成模型序列5'-dTTTx TT-3', 考察了单体及寡聚核苷酸序列在DNA/RNA合成条件下的稳定性, 提出了固相合成含有烷基修饰磷酸残基的寡聚核苷酸序列裂解及脱保护条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号