首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Single crystals of solid solutions Rb1?xTi1?xNbxOPO4(RTP: Nb) were grown and the temperature dependences of their dielectric and nonlinear optical properties and electric conductivity were studied. The maximum possible niobium content in these crystals is close to x = 0.1. The niobium impurities decelerate growth of {100} faces, and crystals take a plate-like habit. With increasing doping level, ferroelectric phase transitions diffuse and their temperature decreases. A specific feature of the dielectric properties of RTP: Nb crystals is the appearance of a broad relaxation maximum ε33 in the temperature range 200–600°C caused by the formation of vacancies in the rubidium cation sublattice. The intensity of second-harmonic generation under laser irradiation decreases with increasing niobium content. The atomic structure of a crystal with x = 0.01 is studied and it is established that niobium substitutes for titanium only in Ti(1) positions.  相似文献   

2.
A model is proposed, which shows that, at small deviations from the centrosymmetric state of the atomic structure, the quadratic nonlinear susceptibility of a crystal monotonically decreases with approach of the degree of central symmetry \(\eta _{\overline 1 } \)[φ(r)] of the electric potential function of the crystal structure to unity. The quadratic nonlinear susceptibility of K1 ? x Ti1 ? x Nb x OPO4 (x = 0, 0.02, 0.04, 0.11), K1 ? x Ti1 ? x Sb x OPO4 (x = 0.01, 0.07, 0.17), and KTi1 ? x Zr x OPO4 (x = 0.03, 0.04) crystals has been measured. The degree of central symmetry \(\eta _{\overline 1 } \)[φ(r)] has been calculated for the structures of K1 ? x Ti1 ? x Nb x OPO4 (x = 0, 0.04, 0.11), K1 ? x Ti1 ? x Sb x OPO4 (x = 0.01, 0.07, 0.17), and KTi1 ? x Zr x OPO4 (x = 0.03, 0.04) crystals. It is shown that, at \(\eta _{\overline 1 } \)[φ(r)] > 0.7, the relationship between the quadratic nonlinear susceptibility of the investigated crystals and the degree of their central symmetry \(\eta _{\overline 1 } \)[φ(r)] is in qualitative agreement with the proposed model.  相似文献   

3.
Single crystals of the solid solutions RbTi1 ? x Zr x OPO4 (0.015 < x < 0.034) were grown and their physical properties were studied. In the presence of zirconium in the crystals with the maximum content x = 0.034, the ferroelectric phase transition and the high-temperature transition from the orthorhombic to the cubic phase are shifted to lower temperatures by 100 and 50°C, respectively. In the temperature range from 700°C to room temperature, the conductivity of doped crystals decreases compared to that of the undoped crystals. It is of particular interest that the intensity of the second-harmonic generation of the doped crystals is substantially higher than that of RbTiOPO4.  相似文献   

4.
The structure of (K1–x(NH4)x)3H(SO4)2 crystals with a low ammonium concentration and the behavior of their thermal, optical, and dielectric properties in a temperature range of 275–500 K have been investigated to clarify the influence of doping on the phase transition kinetics. An examination of unit-cell parameters of (K1 – x(NH4)x)3H(SO4)2 single crystals has confirmed the existence of a superprotonic phase transition at a temperature of ≈450K. The conducting properties of single-crystal and polycrystalline samples have been studied.  相似文献   

5.
The crystal structure of the titanium-rich mineral wadeite K2(Ti0.55Zr0.45)Si3O9 from rischorrites of the Khibiny Alkaline Massif (Kola Peninsula, Russia) is studied by X-ray diffraction (XCalibur-S diffractometer, R = 0.0459): a = 6.8611(6) Å and c = 10.0611(9) Å; space group P63/m, Z = 6, D x = 3.03 g/cm3. It is shown that the unit-cell parameters and volume of the mineral of mixed (Ti/Zr) composition are naturally intermediate between those of the terminal members of the isomorphous wadeite-based K2ZrSi3O9–K2(Ti0.55Zr0.45)Si3O9–K2TiSi3O9 series. The expected correlation is due to the ionic radii of Zr4+ and Ti4+ which determine the lengths of Zr/Ti–O bonds in octahedra. The data of field observations and microscopic studies show that the Ti-dominant wadeite is formed on the basis of primary zirconium mineral in the course of a late imposed process under unique geochemical conditions.  相似文献   

6.
The structure of a K0.93Ti0.93Nb0.07OPO4 single crystal is studied at the temperature 30 K. The measurements are performed on a four-circle HUBER-5042 diffractometer with a DISPLEX DE-202 cryostat. Processing of the diffraction data and the preliminary refinement of the model are performed using the ASTRA program package. The final refinement of the structure model is made using the JANA2000 program complex. The refinement shows that the structure of a K0.93Ti0.93Nb0.07OPO4 crystal at T = 30 K is similar to its structure at room temperature. No phase transitions are revealed. Slight temperature-induced displacements of the potassium positions in the large cavities of the mixed framework are established.  相似文献   

7.
The synthesis and X-ray diffraction study of compound Rb2[(UO2)2(C2O4)3], which crystallizes in the monoclinic crystal system, are performed. The unit cell parameters are as follows: a = 7.9996(6) Å, b = 8.8259(8) Å, c = 11.3220(7) Å, β = 105.394(2)°, and V = 770.7(1) Å3; space group P21/n, Z = 2, and R 1 = 0.0271. [(UO2)2(C2O4)3]2? layers belonging to the AK 0.5 02 T 11 crystal chemical group of uranyl complexes (A = UO 2 2+ , K 02 = C2O 4 2? , and T 11 = C2O 4 2? ) are uranium-containing structural units of the crystals. The layers are connected with outer-sphere rubidium cations by electrostatic interactions.  相似文献   

8.
Perovskites Bi0.5D0.5MnO3(D = Pb, Ba) were prepared under high pressure (4 GPa) at 1200–1300°C. According to the X-ray diffraction data, crystalline Bi0.5Pb0.5MnO3 has a tetragonal unit cell with the parameters a = 3.940 Å and c = 3.800 Å, whereas Bi0.5Ba0.5MnO3 crystals are cubic with a = 3.940 Å. It is concluded from magnetic studies that lead-containing manganite is an antiferromagnet with TN = 120 K, whereas Bi0.5Ba0.5MnO3 is a spin glass with spin-freezing temperature T f = 38 K. Both compounds are decomposed upon heating in air at temperatures above 500°C. With the use of synthesis in air, Bi0.5Ca0.5 ? xD x MnO3 solid solutions with x as high as 0.25 were obtained.  相似文献   

9.
The influence of uniaxial mechanical pressure σ m ≤ 150 bar on the spectral (300–800 nm) dependence of the birefringence Δn i of (NH4)2SO4 crystals is studied. The dispersion Δn i (λ) is shown to be normal and greatly increases when approaching the absorption edge. Uniaxial pressure changes the value of dispersion dΔn i /dλ but not its character. It is found that the simultaneous action of pressures σ x ~ σ y ~ 560 bar results in the occurrence of a uniaxial isotropic state. Piezoelectric constants of the crystals are estimated.  相似文献   

10.
The structure of (K0.967(NH4)0.033)3H(SO4)2 crystals, belonging to the K3H(SO4)2–(NH4)3H(SO4)2–H2O salt system, has been investigated by X-ray structural analysis. The room-temperature characteristics of the atomic structure of these crystals are found to be as follows: sp. gr. C2/c, Z = 4, a = 14.7025(4) Å, b = 5.6859(2) Å, c = 9.7885(3) Å, and R/wR = 0.021/0.030%. The thermal and optical properties of (K,NH4)3H(SO4)2 and K3H(SO4)2 single crystals have been investigated and compared in a temperature range of 295–500 K.  相似文献   

11.
The complete X-ray structure determination of Czochralski grown La3Zr0.5Ga5Si0.5O14 single crystals with the Ca3Ga2Ge4O14 structure is performed (sp. gr. P321, a = 8.226(1) Å, c = 5.1374(6) Å, Z = 1, Mo Kα1 radiation, 1920 crystallographically independent reflections, R = 0.0166, Rw = 0.0192). The absolute structure is determined. It is shown that possible transition of some of La atoms (~1.2%) from the 3e to 6g position may give rise to the formation of structural defects.  相似文献   

12.
To search for new oxygen conductive phases, a series of Bi2V1 ? x MoxO5.5 + x/2 ceramic samples have been synthesized in which the extreme compositions Bi2VO5.5 (x = 0) and Bi2MoO6 (x = 1) are single-layer Aurivillius phases having ferroelectric properties and high ionic oxide conductivity. It is established that single-layer Aurivillius phases exist in the composition ranges 0 ≤ x ≤ 0.1 and 0.9 ≤ x ≤ 1. Additional phases with BiVO4 and Bi6Mo2O15 structures are found in the range 0.2 ≤ x ≤ 0.8. The presence of molybdenum stabilizes the orthorhombic β-Bi2VO5.5 phase at room temperature. The conductivity of solid solutions based on Bi2VO5.5 differs only slightly from that of pure bismuth vanadate. Conductivity of solid solutions based on Bi2MoO6 is half an order of magnitude higher than that of pure bismuth molybdate.  相似文献   

13.
Zirconium phosphate Zr3(PO4)4 has been synthesized by the sol-gel technique and investigated using X-ray powder diffraction, IR spectroscopy, and differential scanning calorimetry. It has been established that the symmetry of the unit cell, R \(\bar 3\) c, which is characteristic of the NaZr2(PO4)3 (NZP) family, is lowered to P \(\bar 3\) c. The behavior of the zirconium phosphate during heating has been examined using high-temperature X-ray diffraction at temperatures ranging from 25 to 575°C. It has been revealed that the structure of the zirconium phosphate is hardly subjected to expansion due to heating in the temperature ranges 25–125°C (α a < 1 × 10?6 K?1, α c < 1 × 10?6 K?1, Δα < 1 × 10?6 K?1) and 325–575°C (α a = ?1.4 × 10?6 K?1, α c < 1 × 10?6 K?1, Δα < ?2.4 × 10?6 K?1). In the temperature range 125–325°C, the synthesized compound undergoes a second-order phase transition (upon heating), which is accompanied by the contraction of the structure along all crystallographic directions. Upon cooling in the range from 75 to 25°C, the phase transition is accompanied by the expansion of the structure.  相似文献   

14.
CsFe(MoO4)2 single crystals have been grown by solution-melt crystallization with a charge-to-solvent ratio of 1: 3 (with Cs2Mo3O10 used as a solvent). The crystal structure of this compound has been refined by X-ray diffraction (X8 APEX automatic diffractometer, MoK α radiation, 356 F(hkl), R = 0.0178). The trigonal unit cell has the following parameters: a = b = 5.6051(2) Å, c = 8.0118(4) Å, V = 217.985(15) Å3, Z = 1, ρcalc = 3.875 g/cm3, and sp. gr. P \(\bar 3\) m1. The structure is composed of alternating layers of FeO6 octahedra (with MoO4 tetrahedra attached by sharing vertices) and CsO12 icosahedra.  相似文献   

15.
TlMnS2 and TlMnSe2 crystals have been synthesized by the method of solid-state reaction from chemical elements weighted in the stoichiometric ratio. X-ray, magnetic, and electric studies have been performed. It is established that the TlMnS2 compound crystallizes in the tetragonal structure with the unit-cell parameters a = 7.74 Å, c = 30.60 Å, Z = 20, and ρx = 6.40 g/cm3; TlMnSe2 crystallizes in the hexagonal structure with the unit-cell parameters a = 6.53 Å, c = 23.96 Å, Z = 8, and ρx = 6.71 g/cm3. TlMnS2 and TlMnSe2 are semiconductors and exhibit an antiferromagnetic character of exchange interaction.  相似文献   

16.
The phase formation of Nd5Mo3 – xW x O16.5, Nd5Mo3 – xNb x O16.5 – х/2, and Nd5Mo3 – xV x O16.5 – х/2 solid solutions based on a fluorite-like Nd5Mo3O16.5 compound (mixed conductor with interstitial oxygen conductivity) has been studied. The electrical conductivity of doped compounds obeys the Arrhenius law and, at a low impurity content, is as high as 0.03–0.08 S/cm at 800°C. Substitution of Mo6+ cations by V5+ and Nb5+ cations reduces the interstitial oxygen content, which causes a decrease in the solid-solution electrical conductivity by 1–2 orders of magnitude and a decrease in the cubic unit-cell parameter. A wide diffuse anomaly with a maximum of about 1500–4000 has been observed in the temperature dependence of the permittivity for all single-crystal and polycrystalline samples in the range of 300–900°C.  相似文献   

17.
The switching processes in calcium barium niobate crystals CaxBa1–x Nb2O6 with x = 0.32 have been investigated. The dielectric hysteresis loops observed in the samples exposed to alternating fields of different frequencies and constant amplitude have been analyzed. It is shown that the loop formation is caused by the sample heating. The sample temperature increases due to the dielectric loss energy release only up to a certain frequency, above which complete switching becomes impossible.  相似文献   

18.
The crystal structure of monoclinic La3SbZn3Ge2O14 crystals from the langasite family is determined by X-ray diffraction analysis [a = 5.202(1) Å, b = 8.312(1) Å, c = 14.394(2) Å, β = 90.02(1)°, sp. gr. A2, Z = 2, and R/R w = (5.2/4.6)%]. The structure is a derivative of the Ca3Ga2Ge4O14-type structure (a = 8.069 Å, c = 4.967 Å, sp. gr. P321, Z = 1). The crystal studied is a polysynthetic twin with the twin index n = 2, whose monoclinic components are related by pseudomerohedry by a threefold rotation axis of the supergroup P321.  相似文献   

19.
The absolute crystal structure of the Ca3TaGa3Si2O14 piezoelectric compound is refined using X-ray diffraction analysis. The unit cell parameters and final R factors are as follows: a = 8.112(1) Å, c = 4.9862(6) Å, space group P321, Z = 1, R = 0.98%, and R w = 1.42%. It is shown that the configuration of the absolute crystal structure inherited from the seed material determines the positive sense of the optical activity of the crystal under investigation. The structural and acoustical characteristics of the Ca3TaGa3Si2O14 crystals are compared with those of the La3Ga5SiO14 crystals.  相似文献   

20.
A novel structure type has been established as a result of studying a non-merohedral microtwin of polyoxovanadate (K2ZnV5O14) by X-ray diffractometry (R = 0.0595). The new compound, synthesized under hydrothermal conditions in the ZnCl2–K2CO3–V2O5–H2O system, is characterized as follows: a = 8.066(5) Å, b = 8.117(5) Å, c = 9.236(5) Å, β = 105.287(5)°, sp. P21/m, Z = 2, ρcalcd = 3.54 g/cm3. Edge-shared five-core “clusters” consisting of vanadium octahedra, between which ZnO4 tetrahedra (sharing vertices with octahedra) are located, form two-dimensional two-layer anion packets of the (ZnV5O14)2– composition, alternating along the c axis with layers of potassium atoms. Structural peculiarities determine the morphology and color of new-phase crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号