首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present the compact representation for matrices belonging to the Broyden class of quasi‐Newton updates, where each update may be either rank one or rank two. This work extends previous results solely for the restricted Broyden class of rank‐two updates. In this article, it is not assumed that the same Broyden update is used in each iteration; rather, different members of the Broyden class may be used in each iteration. Numerical experiments suggest that a practical implementation of the compact representation is able to accurately represent matrices belonging to the Broyden class of updates. Furthermore, we demonstrate how to compute the compact representation for the inverse of these matrices and a practical algorithm for solving linear systems with members of the Broyden class of updates. We demonstrate through numerical experiments that the proposed linear solver is able to efficiently solve linear systems with members of the Broyden class of matrices with high accuracy. As an immediate consequence of this work, it is now possible to efficiently compute the eigenvalues of any limited‐memory member of the Broyden class of matrices, allowing for the computation of condition numbers and the ability to perform sensitivity analysis.  相似文献   

2.
In this paper, we propose an efficient numerical scheme for solving some large‐scale ill‐posed linear inverse problems arising from image restoration. In order to accelerate the computation, two different hidden structures are exploited. First, the coefficient matrix is approximated as the sum of a small number of Kronecker products. This procedure not only introduces one more level of parallelism into the computation but also enables the usage of computationally intensive matrix–matrix multiplications in the subsequent optimization procedure. We then derive the corresponding Tikhonov regularized minimization model and extend the fast iterative shrinkage‐thresholding algorithm (FISTA) to solve the resulting optimization problem. Because the matrices appearing in the Kronecker product approximation are all structured matrices (Toeplitz, Hankel, etc.), we can further exploit their fast matrix–vector multiplication algorithms at each iteration. The proposed algorithm is thus called structured FISTA (sFISTA). In particular, we show that the approximation error introduced by sFISTA is well under control and sFISTA can reach the same image restoration accuracy level as FISTA. Finally, both the theoretical complexity analysis and some numerical results are provided to demonstrate the efficiency of sFISTA.  相似文献   

3.
A new algorithm for solving large-scale convex optimization problems with a separable objective function is proposed. The basic idea is to combine three techniques: Lagrangian dual decomposition, excessive gap and smoothing. The main advantage of this algorithm is that it automatically and simultaneously updates the smoothness parameters which significantly improves its performance. The convergence of the algorithm is proved under weak conditions imposed on the original problem. The rate of convergence is $O(\frac {1}{k})$ , where k is the iteration counter. In the second part of the paper, the proposed algorithm is coupled with a dual scheme to construct a switching variant in a dual decomposition framework. We discuss implementation issues and make a theoretical comparison. Numerical examples confirm the theoretical results.  相似文献   

4.
AbstractAn interior trust-region-based algorithm for linearly constrained minimization problems is proposed and analyzed. This algorithm is similar to trust region algorithms for unconstrained minimization: a trust region subproblem on a subspace is solved in each iteration. We establish that the proposed algorithm has convergence properties analogous to those of the trust region algorithms for unconstrained minimization. Namely, every limit point of the generated sequence satisfies the Krush-Kuhn-Tucker (KKT) conditions and at least one limit point satisfies second order necessary optimality conditions. In addition, if one limit point is a strong local minimizer and the Hessian is Lipschitz continuous in a neighborhood of that point, then the generated sequence converges globally to that point in the rate of at least 2-step quadratic. We are mainly concerned with the theoretical properties of the algorithm in this paper. Implementation issues and adaptation to large-scale problems will be addressed in a  相似文献   

5.
We present an alternating direction dual augmented Lagrangian method for solving semidefinite programming (SDP) problems in standard form. At each iteration, our basic algorithm minimizes the augmented Lagrangian function for the dual SDP problem sequentially, first with respect to the dual variables corresponding to the linear constraints, and then with respect to the dual slack variables, while in each minimization keeping the other variables fixed, and then finally it updates the Lagrange multipliers (i.e., primal variables). Convergence is proved by using a fixed-point argument. For SDPs with inequality constraints and positivity constraints, our algorithm is extended to separately minimize the dual augmented Lagrangian function over four sets of variables. Numerical results for frequency assignment, maximum stable set and binary integer quadratic programming problems demonstrate that our algorithms are robust and very efficient due to their ability or exploit special structures, such as sparsity and constraint orthogonality in these problems.  相似文献   

6.
Motivated by the Cayley–Hamilton theorem, a novel adaptive procedure, called a Power Sparse Approximate Inverse (PSAI) procedure, is proposed that uses a different adaptive sparsity pattern selection approach to constructing a right preconditioner M for the large sparse linear system Ax=b. It determines the sparsity pattern of M dynamically and computes the n independent columns of M that is optimal in the Frobenius norm minimization, subject to the sparsity pattern of M. The PSAI procedure needs a matrix–vector product at each step and updates the solution of a small least squares problem cheaply. To control the sparsity of M and develop a practical PSAI algorithm, two dropping strategies are proposed. The PSAI algorithm can capture an effective approximate sparsity pattern of A?1 and compute a good sparse approximate inverse M efficiently. Numerical experiments are reported to verify the effectiveness of the PSAI algorithm. Numerical comparisons are made for the PSAI algorithm and the adaptive SPAI algorithm proposed by Grote and Huckle as well as for the PSAI algorithm and three static Sparse Approximate Inverse (SAI) algorithms. The results indicate that the PSAI algorithm is at least comparable to and can be much more effective than the adaptive SPAI algorithm and it often outperforms the static SAI algorithms very considerably and is more robust and practical than the static ones for general problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

In this paper, motivated by Moreau’s proximal algorithm, we give several algorithms and related weak and strong convergence theorems for minimization problems under suitable conditions. These algorithms and convergence theorems are different from the results in the literatures. Besides, we also study algorithms and convergence theorems for the split feasibility problem in real Hilbert spaces. Finally, we give numerical results for our main results.  相似文献   

8.
In this paper, a switching method for unconstrained minimization is proposed. The method is based on the modified BFGS method and the modified SR1 method. The eigenvalues and condition numbers of both the modified updates are evaluated and used in the switching rule. When the condition number of the modified SR1 update is superior to the modified BFGS update, the step in the proposed quasi-Newton method is the modified SR1 step. Otherwise the step is the modified BFGS step. The efficiency of the proposed method is tested by numerical experiments on small, medium and large scale optimization. The numerical results are reported and analyzed to show the superiority of the proposed method.  相似文献   

9.
The matrix rank minimization problem has applications in many fields, such as system identification, optimal control, low-dimensional embedding, etc. As this problem is NP-hard in general, its convex relaxation, the nuclear norm minimization problem, is often solved instead. Recently, Ma, Goldfarb and Chen proposed a fixed-point continuation algorithm for solving the nuclear norm minimization problem (Math. Program., doi:, 2009). By incorporating an approximate singular value decomposition technique in this algorithm, the solution to the matrix rank minimization problem is usually obtained. In this paper, we study the convergence/recoverability properties of the fixed-point continuation algorithm and its variants for matrix rank minimization. Heuristics for determining the rank of the matrix when its true rank is not known are also proposed. Some of these algorithms are closely related to greedy algorithms in compressed sensing. Numerical results for these algorithms for solving affinely constrained matrix rank minimization problems are reported.  相似文献   

10.
Scaled Optimal Path Trust-Region Algorithm   总被引:3,自引:0,他引:3  
Trust-region algorithms solve a trust-region subproblem at each iteration. Among the methods solving the subproblem, the optimal path algorithm obtains the solution to the subproblem in full-dimensional space by using the eigenvalues and eigenvectors of the system. Although the idea is attractive, the existing optimal path method seems impractical because, in addition to factorization, it requires either the calculation of the full eigensystem of a matrix or repeated factorizations of matrices at each iteration. In this paper, we propose a scaled optimal path trust-region algorithm. The algorithm finds a solution of the subproblem in full-dimensional space by just one Bunch–Parlett factorization for symmetric matrices at each iteration and by using the resulting unit lower triangular factor to scale the variables in the problem. A scaled optimal path can then be formed easily. The algorithm has good convergence properties under commonly used conditions. Computational results for small-scale and large-scale optimization problems are presented which show that the algorithm is robust and effective.  相似文献   

11.
Fast wavelet transform algorithms for Toeplitz matrices are proposed in this paper. Distinctive from the well known discrete trigonometric transforms, such as the discrete cosine transform (DCT) and the discrete Fourier transform (DFT) for Toeplitz matrices, the new algorithms are achieved by compactly supported wavelet that preserve the character of a Toeplitz matrix after transform, which is quite useful in many applications involving a Toeplitz matrix. Results of numerical experiments show that the proposed method has good compression performance similar to using wavelet in the digital image coding. Since the proposed algorithms turn a dense Toeplitz matrix into a band-limited form, the arithmetic operations required by the new algorithms are O(N) that are reduced greatly compared with O(N log N) by the classical trigonometric transforms.  相似文献   

12.
Fixed point and Bregman iterative methods for matrix rank minimization   总被引:5,自引:0,他引:5  
The linearly constrained matrix rank minimization problem is widely applicable in many fields such as control, signal processing and system identification. The tightest convex relaxation of this problem is the linearly constrained nuclear norm minimization. Although the latter can be cast as a semidefinite programming problem, such an approach is computationally expensive to solve when the matrices are large. In this paper, we propose fixed point and Bregman iterative algorithms for solving the nuclear norm minimization problem and prove convergence of the first of these algorithms. By using a homotopy approach together with an approximate singular value decomposition procedure, we get a very fast, robust and powerful algorithm, which we call FPCA (Fixed Point Continuation with Approximate SVD), that can solve very large matrix rank minimization problems (the code can be downloaded from http://www.columbia.edu/~sm2756/FPCA.htm for non-commercial use). Our numerical results on randomly generated and real matrix completion problems demonstrate that this algorithm is much faster and provides much better recoverability than semidefinite programming solvers such as SDPT3. For example, our algorithm can recover 1000 × 1000 matrices of rank 50 with a relative error of 10?5 in about 3?min by sampling only 20% of the elements. We know of no other method that achieves as good recoverability. Numerical experiments on online recommendation, DNA microarray data set and image inpainting problems demonstrate the effectiveness of our algorithms.  相似文献   

13.
求解陀螺系统特征值问题的收缩二阶Lanczos方法   总被引:1,自引:1,他引:0  
孔艳花  戴华 《计算数学》2011,33(3):328-336
本文研究陀螺系统特征值问题的数值解法,利用反对称矩阵Lanczos算法,提出了求解陀螺系统特征值问题的二阶Lanczos方法.基于提出的陀螺系统特征值问题的非等价低秩收缩技术,给出了计算陀螺系统极端特征值的收缩二阶Lanczos方法.数值结果说明了算法的有效性.  相似文献   

14.
We investigate lower bounds for the eigenvalues of perturbations of matrices. In the footsteps of Weyl and Ipsen & Nadler, we develop approximating matrices whose eigenvalues are lower bounds for the eigenvalues of the perturbed matrix. The number of available eigenvalues and eigenvectors of the original matrix determines how close those approximations can be, and, if the perturbation is of low rank, such bounds are relatively inexpensive to obtain. Moreover, because the process need not be restricted to the eigenvalues of perturbed matrices, lower bounds for eigenvalues of bordered diagonal matrices as well as for singular values of rank-k perturbations and other updates of n×m matrices are given.  相似文献   

15.
Exclusion algorithms have been used recently to find all solutions of a system of nonlinear equations or to find the global minimum of a function over a compact domain. These algorithms are based on a minimization condition that can be applied to each cell in the domain. In this paper, we consider Lipschitz functions of order α and give a new minimization condition for the exclusion algorithm. Furthermore, convergence and complexity results are presented for such algorithm.  相似文献   

16.
Nonlinear minimization, as a subcase of nonlinear optimization, is an important issue in the research of various intelligent systems. Recently, Zhang et al. developed the continuous-time and discrete-time forms of Zhang dynamics (ZD) for time-varying nonlinear minimization. Based on this previous work, another two discrete-time ZD (DTZD) algorithms are proposed and investigated in this paper. Specifically, the resultant DTZD algorithms are developed for time-varying nonlinear minimization by utilizing two different types of Taylor-type difference rules. Theoretically, each steady-state residual error in the DTZD algorithm changes in an O(τ 3) manner with τ being the sampling gap. Comparative numerical results are presented to further substantiate the efficacy and superiority of the proposed DTZD algorithms for time-varying nonlinear minimization.  相似文献   

17.
We describe two main classes of one-sided trigonometric and hyperbolic Jacobi-type algorithms for computing eigenvalues and eigenvectors of Hermitian matrices. These types of algorithms exhibit significant advantages over many other eigenvalue algorithms. If the matrices permit, both types of algorithms compute the eigenvalues and eigenvectors with high relative accuracy. We present novel parallelization techniques for both trigonometric and hyperbolic classes of algorithms, as well as some new ideas on how pivoting in each cycle of the algorithm can improve the speed of the parallel one-sided algorithms. These parallelization approaches are applicable to both distributed-memory and shared-memory machines. The numerical testing performed indicates that the hyperbolic algorithms may be superior to the trigonometric ones, although, in theory, the latter seem more natural.  相似文献   

18.
In this paper, two accelerated divide‐and‐conquer (ADC) algorithms are proposed for the symmetric tridiagonal eigenvalue problem, which cost O(N2r) flops in the worst case, where N is the dimension of the matrix and r is a modest number depending on the distribution of eigenvalues. Both of these algorithms use hierarchically semiseparable (HSS) matrices to approximate some intermediate eigenvector matrices, which are Cauchy‐like matrices and are off‐diagonally low‐rank. The difference of these two versions lies in using different HSS construction algorithms, one (denoted by ADC1) uses a structured low‐rank approximation method and the other (ADC2) uses a randomized HSS construction algorithm. For the ADC2 algorithm, a method is proposed to estimate the off‐diagonal rank. Numerous experiments have been carried out to show their stability and efficiency. These algorithms are implemented in parallel in a shared memory environment, and some parallel implementation details are included. Comparing the ADCs with highly optimized multithreaded libraries such as Intel MKL, we find that ADCs could be more than six times faster for some large matrices with few deflations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

An updating algorithm for bivariate local linear regression is proposed. Thereby, we assume a rectangular design and a polynomial kernel constrained to rectangular support as weight function. Results of univariate regression estimators are extended to the bivariate setting. The updates are performed in a way that most of the well-known numerical instabilities of a naive update implementation can be avoided. Some simulation results illustrate the properties of several algorithms with respect to computing time and numerical stability.  相似文献   

20.
This work concerns the derivation of formulae for updating quasi-Newton matrices used in algorithms for computing approximate minima of smooth unconstrained functions. The paper concentrates strictly on the techniques used to derive update formulae. It demonstrates a technique in which problems of finding matrices in ℝ n ×n of minimum Frobenius norm are converted to equivalent problems, using vector representations in ℝ n2 and ℝ n(n+1)/2 of these matrices, and then solvingl 2-minimization problems. These problems are more directly dealt with, and indeed, the paper demonstrates how this technique may be used to handle weighted sparse updates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号