首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The structure and complex formation of concentrated aqueous gallium(III) bromide (GaBr3) solutions have been investigated over a temperature range 80–333 K by Raman spectroscopy, X-ray absorption fine structure (XAFS), and X-ray diffraction. The Raman spectra obtained at various [Br?]/[Ga3+] molar ratios and temperatures have shown that complex formation between Ga3+ and Br? occurs as a predominant species, with [GaBr4]? at [Ga3+] as high as 1~2 M (M = mol?dm ?3) and [Br?]/[Ga3+] ratios > ~2, and that cooling of the solutions favors the formation of the aqua Ga3+. The intermediate species were not seen in the Raman spectra. The XAFS data have revealed that the aqua complex has a sixfold coordination as [Ga(H2O)6]3+ with a Ga3+–H2O distance of (1.96 ± 0.02) Å, whereas the [GaBr4]? complex has a Ga3+–Br? distance of (2.33± 0.02) Å, and that vitrification of the aqueous GaBr3 solution at liquid nitrogen temperature shifts the equilibrium toward the aqua complex. The X-ray diffraction data at different subzero temperatures have shown a tendency of decreasing Ga3+–Br? and increasing Ga3+–H2O interactions with lowering temperature, confirming the preference of aqua Ga3+ in the supercooled liquid state as well as in the glassy state. The Ga3+–H2O distance of ~1.8 Å for the tetrahedral coordination was found in a 2.01 M gallium(III) bromide solution with a [Br?]/[Ga3+] ratio of 3.7 and gradually increased to a value of 1.92 Å for octahedral geometry with decreasing temperature, suggesting that equilibrium shifts from [GaBr4]? to [Ga(H2O)6]3+ through intermediate species, [GaBr n ](3?n)+ (n = 2 and 3). The Ga3+–Br? and Br?–Br? distances within [GaBr4]? with an almost tetrahedral symmetry are (2.35± 0.02) and (3.82± 0.03) Å, respectively. The Ga3+ has the second hydration shell at (4.03± 0.03) Å and the hydration of Br? is characterized with a Br?–H2O distance of (3.35± 0.02) Å at all temperatures investigated.  相似文献   

2.
A radical cation salt based on bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) containing the [Pt(NO2)4]2? anion was synthesized for the first time. The crystal and molecular structure of this salt, (BEDT-TTF)2Pt(NO2)4, was established by X-ray diffraction analysis. The crystal structure consists of radical cation BEDT-TTF layers between which planar-square anions [Pt(NO2)4]2? are located. The layers are formed by BEDT-TTF stacks built of dimers. The interplanar distances within the dimers and between them are 3.41 and 3.96 Å, respectively. The distribution of the bond lengths and bond angles in BEDT-TTF corresponds to the charge of the cation +1. The room-temperature conductivity of (BEDT-TTF)2Pt(NO2)4 is 3·10?3 Ω?1 cm?1, and the temperature dependence of the conductivity exhibits the semiconducting character.  相似文献   

3.
Two new compounds containing the possible Fe(III) spin-crossover cation, [Fe(qsal)2]+ (qsalH = N-(8-quinolyl)salicylaldimine), and nickel bis(dithiolene) anions have been synthesized. Both are 1 : 1 salts [Fe(qsal)2][Ni(dddt)2] · CH3CN · CH3OH (1) and [Fe(qsal)2][Ni(pddt)2] (2) (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate; pddt = 6,7-dihydro-5H-1,4-dithiepin-2,3-dithiolate). They have been characterized by X-ray crystal structure determination, elemental analysis, UV-Vis spectra and magnetic susceptibility measurements. The UV–Vis spectra are dominated by [Ni(L)2]? (1, L = dddt; 2, L = pddt). Magnetic studies show antiferromagnetic interaction in 1 from intermolecular S···S contacts and π–π stacking interactions, while the antiferromagnetic interaction in 2 is very weak.  相似文献   

4.
On prolonged heating in water Pd(bpyMe)Cl3 (bpyMe = N-methyl-2,2′-bipyridylium cation) cyclometallates to give monomeric Pd(bpyMe-H)Cl2, whereas the immediate products are a mixture of trans-[Pd(bpyMe)2Cl2]2+ and anionic palladium species. [Pd(bpyMe)2Cl2]2+ was synthesised directly from Na2PdCl4 and on heating gives Pd(bpyMe-H)Cl2 with the elimination of bpyMe and H+.  相似文献   

5.
The reaction of palladium(II) bromide or palladium(II) iodide with the respective gallium(III) halogenide in the presence of aromatic solvents leads to the formation of palladium(II) tetrabromo— and tetraiodogallate. The compounds are isostructural {monoclinic, C2/m, Pd[GaBr4]2: a = 1267(2), b = 808(1), c = 722(1) pm, β = 94.5(1)°; Pd[GaI4]2: a = 1363(1), b = 849.9(4), c = 756.6(7) pm, β = 95.38(3)°}. The structures contain mononuclear complexes Pd[GaX4]2, where X = Br ( 1 ), I ( 2 ). The crystal structures of 1 and 2 were determined by single‐crystal X‐ray diffraction. Crystals of both compounds turned out to be similarly twinned.  相似文献   

6.
K2AgIn3Se6 was synthesized by a molten-salt (alkali-metal polyselenide flux) reaction at 500 ℃. The orange red granular crystal crystallizes in monoclinic space group C2/c with cell parameters, a=1.16411(7) nm, b=1.16348(8) nm, c=2.14179(12) nm, V=2.8740(9) nm^3, and Z=8. The crystal has a new two-dimensional structure containing ^2∞[AgIn3Se6]^2- anionic layers separated by K^- cations and the ^2∞[AgIn3Se6]^2- layer is constructed with corner-shared [AgSe4] and [InSe4] tetrahedra. The optical band gap of K2AgIn3Se6 was determined to be ca. 2.9 eV by UV/vis/NIR diffuse reflectance spectra.  相似文献   

7.
The synthesis, structure and properties of molecular conductors based on M(dddt)2 cation complexes (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) which are metal complex analogs of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF or ET) salts are considered. Formally, the central C=C bond of ET is substituted by a metal ion in the M(dddt)2 complexes. The effect of metal (M=Ni, Pt, Pd) and counterion on crystal structure and conducting properties of M(dddt)2 complexes is analyzed. The similarity and distinction in structures and properties of M(dddt)2 and ET salts are discussed.  相似文献   

8.
The spiroborate anion, namely, 2,3,7,8‐tetracarboxamido‐1,4,6,9‐tetraoxa‐5λ4‐boraspiro[4.4]nonane, [B(TarNH2)2]?, derived from the diol l ‐tartramide TarNH2, [CH(O)(CONH2)]2, shows a novel self‐assembly into two‐dimensional (2D) layer structures in its salts with alkylammonium cations, [NR4]+ (R = Et, Pr and Bu), and sparteinium, [HSpa]+, in which the cations and anions are segregated. The structures of four such salts are reported, namely, the tetrapropylazanium salt, C12H28N+·C8H12BN4O8?, the tetraethylazanium salt hydrate, C8H20N+·C8H12BN4O8?·6.375H2O, the tetrabutylazanium salt as the ethanol monosolvate hemihydrate, C16H36N+·C8H12BN4O8?·C2H5OH·0.5H2O, and the sparteinium (7‐aza‐15‐azoniatetracyclo[7.7.1.02,7.010,15]heptadecane) salt as the ethanol monosolvate, C15H27N2+·C8H12BN4O8?·C2H5OH. The 2D anion layers have preserved intermolecular hydrogen bonding between the amide groups and a typical metric repeat of around 10 × 15 Å. The constraint of matching the interfacial area organizes the cations into quite different solvated arrangements, i.e. the [NEt4] salt is highly hydrated with around 6.5H2O per cation, the [NPr4] salt apparently has a good metric match to the anion layer and is unsolvated, whilst the [NBu4] salt is intermediate and has EtOH and H2O in its cation layer, which is similar to the arrangement for the chiral [HSpa]+ cation. This family of salts shows highly organized chiral space and offers potential for the resolution of both chiral cations and neutral chiral solvent molecules.  相似文献   

9.
A neutral metal complex, [Pt(dddt)2]° (1), has been obtained by oxidation of the [Pt(dddt)2] anion with excess (Bu4N)AuBr4 in nitrobenzene. Crystallographic data for 1a=17.854(9) Å,b=18.409(9) Å,c=4.717(5) Å, =68.83(2)°, space group P21/n,Z=4,d calc=2.55 g/cm3. In1 two independent centrosymmetric [Pt(dddt)2]° molecules are packed in stacks that form layers parallel to the (110) plane. The molecules of1 in the layers have shortened S...S contacts 3.491(9) Å, and 3.594(10) Å. The average bond lengths Pt-S 2.242(7) Å, S-C 1.71(2) Å and C=C 1.40(3) Å, together with the square-planar coordination of Pt in PtS4, suggest considerable conjugation in the metal cycles.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1207–1209, July, 1993.  相似文献   

10.
The reaction of Hg(AsF6)2 with a large molar excess of KrF2 in anhydrous HF has afforded the first homoleptic KrF2 coordination complex of a metal cation, [Hg(KrF2)8][AsF6]2?2 HF. The [Hg(KrF2)8]2+ dication is well‐isolated in the low‐temperature crystal structure of its HF‐solvated [AsF6]? salt, and consists of eight KrF2 molecules that are terminally coordinated to Hg2+ by means of Hg?F(KrF) bonds to form a slightly distorted, square‐antiprismatic coordination sphere around mercury. The Raman spectrum of [Hg(KrF2)8]2+ was assigned with the aid of calculated gas‐phase vibrational frequencies. Computational studies indicate that both electrostatic and orbital interactions are important for metal–ligand bonding and provide insight into the geometry of the [Hg(KrF2)8]2+ cation and the nature of noble‐gas difluoride ligand bonding.  相似文献   

11.
Replacement of [Pd(H2O)4]2+ by cis-[Pd(en)(H2O)2]2+, [PdCl4]2?, and [Pd(NH3)4]2+ on the hydrolytic cleavage of the Ace-Ala-Lys-Tyr-Gly?CGly-Met-Ala-Ala-Arg-Ala peptide is theoretically investigated by using different quantum chemical methods both in the gas phase an in water solution. First, we carry out a series of validation calculations on small Pd(II) complexes by computing high-level ab initio [MP2 and CCSD(T)] and Density Functional Theory (B3LYP) electronic energies while solvent effects are taken into account by means of a Poisson-Boltzmann continuum model coupled with the B3LYP method. After having assessed the actual performance of the DFT calculations in predicting the stability constants for selected Pd(II)-complexes, we compute the relative free energies in solution of several Pd(II)?Cpeptide model complexes. By assuming that the reaction of the peptide with cis-[Pd(en)(H2O)2]2+, [Pd(Cl)4]2?, and [Pd(NH3)4]2+ would lead to the initial formation of the respective peptide-bound complexes, which in turn would evolve to afford a hydrolytically active complex [Pd(peptide)(H2O)2]2+ through the displacement of the en, Cl?, and NH3 ligands by water, our calculations of the relative stability of these complexes allow us to rationalize why [Pd(H2O)4]2+ and [Pd(NH3)4]2+ are more reactive than cis-[Pd(en)(H2O)2]2+ and [PdCl4]2? as experimentally found.  相似文献   

12.
A crystalline salt of 2.2.2-cryptand and oxalic acid, 4,7,13,16,21,24-hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosane bis(hydrogen oxalate), [H2(Crypt-222)]2+·2(C2HO4)?, was synthesized and studied by single crystal X-ray diffraction. In the crystal structure of this salt, the 2.2.2-cryptand cation has a rare conformation of the exo-exo type in which the H atoms at the two protonated N atoms are oriented outside the cryptand cavity. The geometric parameters (bond lengths, bond angles, torsion angles) of the [H2(Crypt-222)]2+ cation and two independent C2HO 4 ? anions were found with a fairly high accuracy, and the crystal packing was determined. These ions are linked by interionic hydrogen bonds to form thick infinite layers parallel to the (xz) plane.  相似文献   

13.
Following the development in the synthesis of subvalent cluster compounds, we report on the use of three different classes of room-temperature ionic liquids for the synthesis of the pentabismuth-tris(tetragallate) salt, Bi5[GaCl4]3, characterized by X-ray diffraction. The Bi5[GaCl4]3 salt was prepared by reduction of BiCl3 using gallium metal in ionic liquid reaction media containing a strong Lewis acid, GaCl3. The ionic liquids; trihexyltetradecyl phosphonium chloride [Th-Td-P+]Cl?, 1-dodecyl-3-methylimidazolium chloride [Dod-Me-Im+]Cl? and N-butyl-N-methylpyrrolidinium chloride [Bu-Me-Pyrr+]Cl? from three of the main classes of ionic liquids were used in synthesis. Reactions using ionic liquids composed of the trihexyltetradecyl phosphonium cation [Th-Td-P+] and the anions; tetrafluoroborate [BF4 ?], bis(trifluoro-methyl sulfonyl) imide [(Tf)2N?] and hexafluorophosphate [PF6 ?] were also investigated.  相似文献   

14.
From thallium(III) bromide solution, the unsubstituted pyridinium cation yields a complex ( 1 ) with the [Tl2Br9]3? anionic stoichiometry. The Raman spectrum and single‐crystal X‐ray crystallographic analysis showed that the salt contains independent [TlBr4]? and bromide anions. A variety of mono‐ and disubstituted pyridinium cations were also employed in similar syntheses. The 2‐bromopyridinium cation gave a salt 2 with [TlBr5]2? stoichiometry, but the crystal structure revealed very weakly interacting [TlBr4]? and bromide anions with a Tl ???Br? distance of 4.1545(6) Å. The 2‐(ammoniomethyl)pyridinium and 2‐amino‐4‐methylpyridinium cations yielded complexes containing [TlBr5]2? ( 3 ) and [TlBr4]? ( 4 ) species, respectively, which were confirmed by Raman spectroscopy and X‐ray crystallographic analyses. For 3 , the [TlBr5]2? anion has a highly distorted trigonal bipyramidal conformation with one long axial Tl ???Br bond of 3.400(2) Å. Microanalytical results in conjunction with Raman spectra from a further five salts confirmed that they all contain the simple [TlBr4]? anion. N? H ???Br Hydrogen bonds clearly influence the nature of the anionic species obtained in these systems.  相似文献   

15.
The structure of a gallium tribromide complex with 2-aminomethylpyridine (amPy) (1: 1) has been established by single-crystal X-ray diffraction for the first time. The complex has been shown to have the ionic structure [GaBr2amPy2]+[GaBr4]? in the condensed phase. The qualitative composition of the vapor over the complex has been determined by mass spectrometry within a temperature range of 80–250°C. The elimination of hydrogen bromide and 2-aminomethylpyridine proceed at 80–180°C to enrich the condensed phase with gallium tribromide. GaBr2(amPy-H), GaBr3amPy, GaBr(amPy-2H), and Ga2Br5(amPy-H) are the major gallium-containing vapor species at 250°C.  相似文献   

16.
A new complex, bis(triethylene glycol-O,O′,O′’,O?)manganese(II) dibromide [Mn(TEG)2]2+·2Br?, was prepared. Its structure was studied by single crystal X-ray diffraction. The complex cation [Mn(TEG)2]2+ is of the host-guest type with two TEG ligands (podands) as hosts. Both TEG ligands are disordered and tetradentate, with all the four oxygen atoms of each ligand participating in the coordination. The Mn2+ cation has coordination number 8, and its coordination polyhedron is a distorted bisdisphenoid (trigonal dodecahedron). The geometric parameters (bond lengths, bond and torsion angles) of the complex were determined relatively accurately. In the crystal structure, the ions form infinite thick layers by interionic hydrogen bonds O-H···Br?.  相似文献   

17.
The formation of binary complex salts containing gold(III) in the cation and palladium(II) in the anion in the systems [(Bipy)AuCl2]+-[PdCl4]2? occurs by transfer of the N,N-electron-donating chelating ligand bipyridine and the chloride ligands between the gold-containing cation and the palladium-containing anion. The resulting neutral salt [(Bipy)PdCl2] crystallizes together with the anion [AuCl4]? from acetonitrile-water (1 : 1-1 : 2, v/v) to give the complex salt (NH 4 + )0.20[(Bipy)AuCl 2 + ]1.04[(Bipy)PdCl2]0.96[AuCl 4 ? ]0.76PdCl 4 2? ]0.24 with a total Au : Pd ratio of 3 : 2. The ammonium cation is formed from acetonitrile upon its hydrolysis most likely catalyzed by Pd complexes. Quantum-chemical calculations were performed to study the transfer of the chelating ligand theoretically.  相似文献   

18.
Combination of the [Ni(bpy)3]2+ cation complex and the [Pd(dmit)2] anion (dmit=C3S52−=1,3-dithiole-2thione-4,5-dithiolate) has resulted in the paramagnetic [Ni(bpy)3][Pd(dmit)2]·CH3CN compound, a suitable precursor for a molecular magnetic conductor. Its crystal structure consists of a Pd(dmit)2 anion arrangement that is quite different from segregated stack layers often found for M(dmit)2−based compounds. The reduction of the [Pd(dmit)2]- to the 2− charged anion in the title compound most probably is the result of a charge disproportionation between Pd(dmit)2 anions.  相似文献   

19.
A new ion-pair complex, [TTF][Pd(mnt)2] (1), where TTF+ =?tetrathiafulvalene and mnt2??=?maleonitriledithiolate, was synthesized and characterized structurally. Compound 1 crystallizes in triclinic space group P-1, with a?=?8.008(5)?Å, b?=?11.333(8)?Å, c?=?11.373(6)?Å, α?=?108.112(7)°, β?=?91.550(5)°, γ?=?95.232(5)°, and V?=?975.2(11)?Å3. The [TTF]+ cations (C) and [Pd(mnt)2]? anions (A) form mixed stacks in …AACCAACC… fashion, and the neighboring mixed stacks are held together via van der Waals forces in the crystal. Compound 1 shows weak Curie/Weiss-type magnetic behavior from 2 to 370?K; theoretical investigation disclosed the existence of strongly antiferromagnetic coupling in both [Pd(mnt)2]2 2? and [TTF]2 2+ dimer pairs via frontier orbitals overlap mechanism and weakly ferromagnetic coupling between the face-to-face overlapped [TTF]+ and [Pd(mnt)2]? via spin polarization mechanism within a mixed stack. The powdered pellet electrical conductivity measurement indicated that 1 shows semiconductor character with activation energy of 1.1(3)?eV.  相似文献   

20.
Ba4Cu2Al3F21 is orthorhombic : a = 5.299(1) Å, b = 7.318(1) Å, c = 41.529(7) Å, Z = 4. The crystal structure was solved in the space group P212121 (no19) from X-ray single crystal data using 5682 unique reflections (3698 with FO/σ(F) > 4). It consists in a succession along c of 8 layers of 2 different types of sheets. The first layer, formulated [Cu2AlF11]4− in which copper-fluorine octahedra are linked by edges to form infinite distorted chains connected together by aluminium-fluorine octahedra, is followed by two [Al2F10]4− layers of infinite cischains of aluminium-fluorine octahedra linked by two vertices and another [Cu2AlF11]4− layer. These 4 layers are doubled along c by one of the screw-axes 21. The barium ions, 12-coordinated, are inserted between the sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号