首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A systematic series of flexible polyurethane foams (FPUF) with different concentrations of flame retardants, bis([dimethoxyphosphoryl]methyl) phenyl phosphate (BDMPP), and melamine (MA) or expandable graphite (EG) was prepared. The mechanical properties of the FPUFs were evaluated by a universal testing machine. The pyrolysis behaviors and the evolved gas analysis were done by thermogravimetric analysis (TGA) and TGA coupled with Fourier-transform infrared (TG-FTIR), respectively. The fire behaviors were studied by limiting oxygen index (LOI), UL 94 test for horizontal burning of cellular materials (UL 94 HBF), and cone calorimeter measurement. Scanning electronic microscopy (SEM) was used to examine the cellular structure's morphology and the postfire char residue of the FPUFs. LOI and UL 94 HBF tests of all the flame retarded samples show improved flame retardancy. BDMPP plays an essential role in the gas phase because it significantly reduces the effective heat of combustion (EHC). This study highlights the synergistic effect caused by the combination of BDMPP and EG. The measured char yield from TGA is greater than the sum of individual effects. No dripping phenomenon occurs during burning for FPUF-BDMPP-EGs, as demonstrated by the result of the UL 94 HBF test. EG performs excellently on smoke suppression during burning, as evident in the result of the cone calorimeter test. MA reduces the peak heat release rate (pHRR) significantly. The synergistic effect of the combination of BDMPP and EG as well as MA offers an approach to enhance flame retardancy and smoke suppression.  相似文献   

2.
The flame‐retardant polylactic acid (PLA) has been prepared via mixing the flame retardant TGIC‐DOPO derived from phosphaphenanthrene and triazine groups into matrix. The flame retardancy of TGIC‐DOPO/PLA composites was characterized using the limiting oxygen index (LOI), vertical burning test (UL94), and cone calorimeter test. Results reveal that the 10%TGIC‐DOPO/PLA composite obtained 26.1% of LOI and passed UL94 V‐0 rating. The flame‐retardant mechanism of PLA composites was characterized via thermogravimetric analysis (TGA), pyrolysis gas chromatography/mass spectroscopy, and TGA‐Fourier transform infrared. It discloses that TGIC‐DOPO promoted PLA decomposing and dripping early, and it also released the fragments with quenching and dilution effects. These actions of TGIC‐DOPO contribute to reducing the burning intensity and extinguishing the fire on droplets, thus imposing better flame retardancy to PLA. When TGIC‐DOPO was partly replaced by melamine cyanuric with dilution effect and hexa‐phenoxy‐cyclotriphosphazene with quenching effect in composites respectively, the results confirm that TGIC‐DOPO utilize well‐combination in dilution effect and quenching effect to flame retard PLA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The objective of the study was to investigate the effect of the organo‐modified nanosepiolite (ONSep) on improving the fire safety of polypropylene (PP). The composites based on PP, flame retardant master batch (MB‐FR, 25 wt% PP+50 wt% decabromodiphenyl ether (DBDPE)+25% antimony trioxide (ATO)) and ONSep were prepared via melt blending. The results of the limiting oxygen index (LOI) and vertical burning rating (UL‐94) test indicated that PP/40 wt% MB composites had no rating with seriously dripping phenomenon, while the LOI value was only 22.5. However, as 4 wt% ONSep was added in PP/40 wt% MB composites, the composites achieved UL94 V‐0 rating and the LOI value was 24.3. In comparison, PP/50 wt% MB composites could not reach the V‐0 rating either. The TGA results revealed that the addition of ONSep enhanced the thermal stability of the PP/MB‐FR composites. The cone calorimeter results indicated that the heat release rate, average mass loss rate, smoke production rate and smoke temperature of the PP/40 wt% MB‐FR/4 wt% ONSep composites decreased in comparison with those of PP/40 wt% MB‐FR composites. Simultaneously, the Young modulus and impact strength were also much better improved with the increase of ONSep loading. Therefore, the synergistic flame retardancy of ONSep in PP/MB‐FR matrix significantly containing a halogen based flame retardant (DBDPE) significantly improved the fire safety and mechanical properties of the composites, and allowed to decrease the total amount of brominated fire retardants.  相似文献   

4.
The flame retardancy mechanisms of poly(1,4‐butylene terephthalate) (PBT) containing microencapsulated ammonium polyphosphate (MAPP) and melamine cyanurate (MC) were investigated via pyrolysis analysis (thermogravimetric analysis (TGA), real‐time Fourier transform infrared (FTIR), TG‐IR), cone calorimeter test, combustion tests (limited oxygen index (LOI), UL‐94), and residue analysis (scanning electron microscopy (SEM)). A loading of 20 wt% MC to PBT gave the PBT composites an LOI of 26%, V‐2 classification in UL‐94 test and a high peak heat release rate (HRR) in cone calorimeter test. Adding APP to PBT/MC composites did not improve their flame retardancy. In comparison with the addition of ammonium polyphosphate (APP) to PBT, MAPP with silica gel shell and MAPP with polyurethane shell both promoted the intumescent char‐forming and improved the flame retardancy of PBT through different mechanisms in the presence of MC. These two halogen‐free PBT composites with V‐0 classification according to UL‐94 test were obtained; their LOI were 32 and 33%, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The main aim of this work was to investigate the synergistic effect of expandable graphite (EG) and aluminum hypophosphite (AHP) on the flame retardancy of rigid polyurethane foams (RPUFs). A series of flame retardant RPUF containing EG and AHP were prepared by one‐shot and free‐rise method. The flame retardant, thermal degradation, and combustion properties of RPUF hybrids were characterized through limiting oxygen index (LOI) test, vertical burning (UL‐94) test, thermogravimetric analysis and microscale combustion calorimeter. The LOI and UL‐94 results showed that the RPUF sample with 10 wt% EG and 5 wt% AHP passed UL‐94 V‐0 rating and reached a relatively high LOI value of 28.5%, which is superior over other EG/AHP ratios in RPUF at the equivalent filler loading. Microscale combustion calorimeter results revealed that the incorporation of EG and AHP into RPUF reduced the peak heat release rate and total heat release, thus decrease the fire risk of RPUF significantly. Incorporation of EG and AHP improved the thermal stability of RPUF as observed from the thermogravimetric analysis results and also enhanced the thermal resistance of char layer at high temperature from scanning electron microscopy and Raman spectroscopy. Moreover, it could be seen from thermogravimetric analysis/infrared spectrometry spectra that the addition of EG and AHP significantly decreased the combustible gaseous products such as hydrocarbons and ethers. Finally, the synergistic mechanism in flame retardancy was discussed and speculated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The flame retardancy of a novel intumescent flame‐retardant polypropylene (IFR‐PP) system, which was composed of a charring agent (CA), ammonium polyphosphate (APP), and polypropylene (PP), could be enhanced significantly by adding a small amount (1.0 wt%) of an organic montmorillonite (O‐MMT). The synergistic flame‐retardant effect was studied systematically. The thermal stability and combustion behavior of the flame‐retarded PP were also investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL‐94), scanning electronic microscopy (SEM), and cone calorimeter test (CCT). TGA results demonstrated that the onset decomposition temperatures of IFR‐PP samples, with or without O‐MMT, were higher than that of neat PP. Compared with IFR‐PP, the LOI value of IFR‐PP containing 1.0 wt% O‐MMT was increased from 30.8 to 33.0, and the UL‐94 rating was also enhanced to V‐0 from V‐1 when the total loading of flame retardant was the same. The cone calorimeter results showed that the IFR‐PP with 1.0 wt% of O‐MMT had the lowest heat release rate (HRR), total heat release (THR), total smoke production (TSP), CO production (COP), CO2 production (CO2P), and mass loss (ML) of all the studied IFR‐PP samples, with or without O‐MMT. All these results indicated that O‐MMT had a significantly synergistic effect on the flame‐retardancy of IFR‐PP at a low content of O‐MMT. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In the present study, the effects of intumescent flame retardant (IFR) incorporating organically modified montmorillonite (O‐MMT) on the flame retardancy and melt stability of PLA were investigated. The flame‐retardant PLA was prepared using a twin‐screw extruder and a two roll mill. Then, the influence of IFR and MMT on flame retardancy and melt stability was thoroughly investigated by means of limiting oxygen index (LOI), vertical burning test, thermogravimetric analysis, scanning electronic microscopy, melt flow index (MFI), and parallel plate rheological experiments. The experimental results show that the IFR system in combination with MMT has excellent fire retardancy, i.e. the sample could achieve a UL94 V‐0 rating and LOI value increases from 20.1 for pristine PLA to 27.5 for the flame‐retarded PLA. MFI and rheological measurement indicate that O‐MMT significantly enhances the melt stability and suppresses the melt dripping. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, a novel sulfur‐based flame retardant (SA‐M) was synthesized by the self‐assembly of melamine and sulfamic acid. The chemical structure of SA‐M was fully characterized. SA‐M, in company with Al2O3, was then introduced into polyamide 11 (PA 11) by melt compounding in order to improve the fire resistance of the polymer substrate. The observation by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) indicated the well dispersion of SA‐M in PA 11 matrix. The fire performance of PA 11 composites was evaluated by limiting oxygen index (LOI), vertical burning (UL‐94), and cone calorimeter tests, respectively. The results showed that the presence of 17.5% SA‐M and 2.5% Al2O3 increased the LOI value from 22.4% to 30.9%, upgraded the UL‐94 rating from no rating to V‐0, significantly eliminated the melt dripping, and decreased the peak heat release rate from 1024 to 603 kW/m2. The thermal behaviors were investigated by thermogravimeric analysis (TGA) and TGA‐Fourier transform infrared spectroscopy (FTIR). It was suggested that SA‐M took effects mainly in gas phase by diluting the combustible fuel, leading to the improvement of the fire resistance of PA 11.  相似文献   

9.
Melamine polyphosphate (MPP) and halloysite nanotubes (HNT) were introduced to polyamide 6 (PA6) by melt blending in order to improve the fire resistance. PA6 composite containing 12% flame retardants with good spinnability was obtained. The flammability of PA6 composite was characterized by limiting oxygen index (LOI), UL‐94 vertical burning and cone calorimeter (CONE) tests. The results indicated that the LOI value could reach 24.0 vol.% and UL‐94 rating could achieve V2 level at the presence of 12% flame retardants. CONE data demonstrated that peak heat release rate was significantly reduced from 554 kW/m2 of neat PA6 to 368 kW/m2 of the sample containing flame retardants. Thermal analysis indicated that the thermal stability and char formation were improved by the presence of flame retardants. The morphology of residue char was characterized by scanning electron microscopy; and it suggested that a network‐structured protective char layer had been formed. The possible synergism between MPP/HNT and their flame retardant mechanism was also analyzed and discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
AN S- AND P-CONTAINING FLAME RETARDANT FOR POLYPROPYLENE   总被引:1,自引:0,他引:1  
A novel charring agent,bis(1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane) phenylphosphine sulfide (BCPPS),has been synthesized,and it is combined with ammonium polyphosphate (APP) and melamine phosphate (MP) to impart flame retardance and dripping resistance for polypropylene (PP).The fire performance of the treated PP is investigated by limiting oxygen index (LOI),vertical burning test (UL-94) and cone calorimeter,and the thermal stability and thermal oxidative stability of the compos...  相似文献   

11.
In this work, 12‐tungestocobaltic acid based organic–inorganic hybrid material, [Bmim]6CoW12O40 (CoW) was synthesized and applied as a synergist in polypropylene (PP)/intumescent flame retardant (IFR) composites. The flame retardant properties were investigated by the limiting oxygen index (LOI), UL‐94 vertical burning test, thermal gravimetric analyzer (TGA), cone calorimeter and scanning electron microscopy (SEM) etc. The results showed that the PP composites with 16 wt% IFR and 1 wt% CoW achieves the UL‐94 V‐0 rating and gets a LOI value 28.0. However, only add no less than 25 wt% single IFR, can the PP composites obtain the UL‐94 V‐0 rating, which suggests that CoW has good synergistic effects on flame retardancy of PP/IFR composites. In addition, the SEM and cone calorimeter tests indicated the CoW improves the quality of char layer. The rate of char formation has been enhanced also because of the existence of CoW. It is the combination of a better char quality and a high rate of char formation promoted by CoW that results in the excellent flame retardancy of PP/IFR composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In this second of a series of two papers, the fire behaviour of halogen-free flame retarded polycarbonate (PC) blends with different impact modifiers was studied. The impact modifiers were acrylonitrile-butadiene-styrene (ABS), a poly(n-butyl acrylate) rubber (PBA) with a poly(methyl methacrylate) (PMMA) shell and two silicone-acrylate rubbers consisting of PBA with different amounts of polydimethylsiloxane (PDMS) and different shell materials (PMMA and styrene-acrylonitrile, SAN). The flame retardant was bisphenol A bis(diphenyl phosphate) (BDP). Flammability was determined by LOI and UL 94. The burning behaviour under forced flaming conditions was studied by cone calorimeter under different external irradiations and by pyrolysis combustion flow calorimeter measurements. The exchange of ABS with the pure acrylate rubber worsened flammability, while similar results were obtained in cone calorimeter measurements. The exchange of ABS with the silicone-acrylate rubbers is promising, particularly with higher amounts of PDMS. In flammability tests strongly enhanced LOI values were obtained and therefore silicone-acrylate rubbers look like promising alternatives for ABS.  相似文献   

13.
With a shell of starch-melamine-formaldehyde (SMF) resin, core/shell-like ammonium polyphosphate (SMFAPP) is prepared by in situ polymerization, and is characterized by SEM, FTIR and XPS. The shell leads SMFAPP a high water resistance and flame retardance compared with APP in polypropylene (PP). The flame retardant action of SMFAPP and APP in PP are studied using LOI, UL 94 test and cone calorimeter, and their thermal stability is evaluated by TG. The flame retardancy and water resistance of the PP/SMFAPP composite at the same loading is better than that of the PP/APP composite. UL 94 ratings of PP/SMFAPP can reach V-0 at 30 wt% loading. The flame retardant mechanism of SMFAPP was studied by dynamic FTIR, TG and cone calorimeter, etc.  相似文献   

14.
An efficient bio‐safe cyclophosphazene flame retardant, 1,5,9,13,16,20‐Hexaoxa‐7,14,21‐triaza‐6λ4,8λ4,5λ4‐triphosphatrispiro[5.1.5.1.5.1]heneicosa‐6,8(14),15(21)‐triene (HCPO), was synthesized, and then was incorporated into polylactic acid (PLA) to improve the fire safety. The chemical structure of HCPO was confirmed by Fourier‐transformed infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. The thermal stability of the compound was characterized by thermogravimetric (TG) analyzer. The cytotoxic effects of HCPO to cells were evaluated. Fire behavior and thermal stability of PLA composites were investigated by vertical burning, limiting oxygen index (LOI), TG analysis, and cone calorimeter. The morphology of residual charring was observed by scanning electron microscope. The results showed HCPO was bio‐safe, and highly effective to enhance the flame retardancy of PLA composites. The LOI value was increased from 18.4 to 27.5 and UL‐94 grade achieved V‐0 for the PLA composite containing only 2% HCPO and 2% pentaerythrotol. It was demonstrated that intermolecular cross‐linking reaction between pentaerythrotol and HCPO in high temperature range could accelerate the formation of compact char layers.  相似文献   

15.
任杰  李建波 《高分子科学》2016,34(6):785-796
To minimize the loading level of the char-forming phosphorus based flame retardants in the poly(lactic acid) (PLA) with reduced flammability, we have developed the flame-retarded PLA nanocomposites by melt blending method incorporating organically modified montmorillonite (OMMT) and aluminium diethylphosphinate (AlPi) additives. The influence of AlPi and OMMT on flame retardancy and thermal stability of PLA was thoroughly investigated by means of the limiting oxygen index (LOI), UL94 test, cone calorimeter, X-ray diffraction (XRD), thermogravimetric analysis and scanning electronic microscopy (SEM). The experimental results show that the PLA/AlPi/OMMT system has excellent fire retardancy. The LOI value increases from 19% for pristine PLA to 28% for the flame-retarded PLA. Cone calorimeter analysis of the PLA/AlPi/OMMT exhibits a reduction in the peak heat release rate values by 26.2%. Thermogravimetric analysis and SEM of cone calorimeter residues indicate that OMMT significantly enhances the thermal stability, promotes char-forming and suppresses the melt dripping. The research of this study implies that the combining of the flame retardant and organoclay results in a synergistic effect. In addition, the flame-retarded PLA nanocomposite also exhibits notable increase in the impact strength and the elongation at break.  相似文献   

16.
《先进技术聚合物》2018,29(1):668-676
A phosphorous‐nitrogen intumescent flame‐retardant, 2,2‐diethyl‐1,3‐propanediol phosphoryl melamine (DPPM), was synthesized and characterized by Fourier transform infrared spectroscopy and nuclear magnetic resonance. Flame‐retardant rigid polyurethane foams (RPUFs) with DPPM (DPPM‐RPUF) as fire‐retardant additive were prepared. Scanning electron microscope (SEM) and mechanical performance testing showed that DPPM exhibited a favorable compatibility with RPUF and negligibly negative influence on the mechanical properties of RPUF. The flame retardancy of DPPM on RPUF was investigated by the limiting oxygen index (LOI), vertical burning test and cone calorimeter. The LOI of DPPM‐RPUF could reach 29.5%, and a UL‐94 V‐0 rating was achieved, when the content of DPPM was 25 php. Furthermore, the DPPM‐RPUF exhibited an outstanding water resistance that it could still obtain a V‐0 rating after water soaking. Thermogravimetric analysis showed that the residual weight of RPUF was relatively low, while the charring ability of DPPM‐RPUF was improved greatly. Real‐time Fourier transform infrared spectroscopy was employed to study the thermo‐oxidative degradation reactions of DPPM‐RPUF. The results revealed that the flame‐retardancy mechanism of DPPM in RPUF was based on the surface charred layer acting as a physical barrier, which slowed down the decomposition of RPUF and prevented the heat and mass transfer between the gas and the condensed phases.  相似文献   

17.
A type of trialkoxysilane‐containing naphtholoxazine compound (Naph‐boz) was successfully synthesized and combined with ammonium polyphosphate/melamine (APP/ME) as an intumescent flame retardant (IFR) to improve the flame‐retardant efficiency of polyoxymethylene (POM). The Underwriters Laboratories 94 (UL94) vertical burning test, limiting oxygen index (LOI), cone calorimeter, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Raman spectral analysis were used to study the flame‐retardant properties and related mechanism. The results showed that the formulation with 20 wt.% of APP, 6 wt.% of ME, and 4 wt.% of Naph‐boz passed UL94 V‐1 rating, and the LOI value was improved to 40.3%. Compared with pure POM, the IFR with Naph‐boz had greater reduction in peak heat release rate (lower 74.9%) and total heat release (lower 40.2%). SEM images showed that compact and reinforcing charred layer was formed during the POM/IFR/4Naph‐boz samples combustion, which was beneficial at reducing and maintaining low combustion parameters throughout the cone calorimeter test. The synergistic flame‐retardant effect between Naph‐boz and APP/ME was considered as the reason for the improvement in flame retardancy POM. Furthermore, because of the Naph‐boz was conducive to the compatibility between the flame retardants and matrix, the notched Izod impact strength of POM/IFR/4Naph‐boz composite was higher than that of POM/IFR system.  相似文献   

18.
Modified montmorillonite‐containing phytic acid (PA‐MMT) has been prepared by acid treatment and then introduced into unsaturated polyester resin (UPR) with an intumescent flame retardant (IFRs). The flame retardancy and thermal degradation of UPR/IFRs/PA‐MMT were evaluated by a limiting oxygen index (LOI) test, a vertical burning test (UL‐94), a thermogravimetric analysis (TGA), and a cone calorimeter test (CCT). Besides, the mechanical properties were studied by a universal testing machine. The LOI value of UPR/IFRs/PA‐MMT composites was increased to 29.2%. The CCT results indicated that the incorporation of PA‐MMT and IFRs significantly improved the combustion behavior of UPR. The results of the mechanical properties indicated that 1.5 wt% loading of PA‐MMT in UPR/IFRs showed the highest improvement in flexural strength and tensile strength. The flame‐retardant mechanism of PA‐MMT/IFRs was examined and discussed based on the results of combustion behavior and char analysis.  相似文献   

19.
The synergistic effects of 4A zeolite (4A) on the thermal degradation, flame retardancy and char formation of a novel halogen‐free intumescent flame retardant polypropylene composites (PP/IFR) were investigated by the means of limiting oxygen index (LOI), vertical burning test (UL‐94), digital photos, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), cone calorimeter test (CCT), laser Raman spectroscopy (LRS) and X‐ray photoelectron spectroscopy (XPS). It was found that a small amount of 4A could dramatically enhance the LOI value of the PP/IFR systems and the materials could pass the UL‐94 V‐0 rating test. Also, it could enhance the fire retardant performance with a great reduction in combustion parameters of PP/IFR system from CCT test. The morphological structures observed by digital and SEM photos revealed that 4A could promote PP/IFR to form more continuous and compact intumescent char layer. The LRS measurement, XPS and TGA analysis demonstrated that the compactness and strength of the outer char surface of the PP/IFR/4A system was enhanced, and more graphite structure was formed to remain more char residue and increase the crosslinking degree. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A phosphorus-containing flame retardant, 4-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphorinan-2-yloxymethyl)-2,6,7-trioxa-1-phospha-bicyclo[2.2.2]octane-1-oxide (MOPO), was synthesized successfully and characterized. The flame retardancy and thermal behavior of a new intumescent flame-retardant (IFR) system for EVA, which was made of MOPO and ammonium polyphosphate (APP), were investigated by limiting oxygen index (LOI) test, vertical burning test (UL-94), cone calorimeter, and thermogravimetric analysis (TGA). An LOI value of 28.4 and UL-94 V-0 rating can be achieved when the total loading of MOPO and APP was 30 wt.%. The results from cone calorimeter indicate that both the heat release rate (HRR) and the total heat release (THR) of IFR-EVA decreased significantly compared with those of neat EVA. TG curves showed that the amount of residues increased significantly when intumescent additives were added; it also could be found that the LOI values increased with the increase in char residues. Meanwhile, morphology of the residues obtained from burning IFR-EVA in LOI test was studied through the SEM observations and rich compact char layers could explain the excellent flame retardance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号