首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Combinatorial chemistry has deeply impacted the drug discovery process by accelerating the synthesis and screening of large numbers of compounds having therapeutic and/or diagnostic potential. These techniques offer unique enhancement in the potential identification of new and/or therapeutic candidates. Our efforts over the past 10 years in the design and diversity-oriented synthesis of low molecular weight acyclic and heterocyclic combinatorial libraries derived from amino acids, peptides, and/or peptidomimetics are described. Employing a "toolbox" of various chemical transformations, including alkylation, oxidation, reduction, acylation, and the use of a variety of multifunctional reagents, the "libraries from libraries" concept has enabled the continued development of an ever-expanding, structurally varied series of organic chemical libraries.  相似文献   

2.
Macrocyclic peptides are predominantly peptide structures bearing one or more rings and spanning multiple amino acid residues. Macrocyclization has become a common approach for improving the pharmacological properties and bioactivity of peptides. A variety of ribosomal-derived and non-ribosomal synthesized cyclization approaches have been established. The biosynthesis of backbone macrocyclic peptides using seven new emerging methodologies will be discussed with regard to the features and strengths of each platform rather than medicinal chemistry tools. The mRNA display variant, known as the random nonstandard peptide integrated discovery (RaPID) platform, utilizes flexible in vitro translation (FIT) to access macrocyclic peptides containing nonproteinogenic amino acids (NAAs). As a new discovery approach, the ribosomally synthesized and post-translationally modified peptides (RiPPs) method involves the combination of ribosomal synthesis and the phage screening platform together with macrocyclization chemistries to generate libraries of macrocyclic peptides. Meanwhile, the split-intein circular ligation of peptides and proteins (SICLOPPS) approach relies on the in vivo production of macrocyclic peptides. In vitro and in vivo peptide library screening is discussed as an advanced strategy for cyclic peptide selection. Specifically, biosynthetic bicyclic peptides are highlighted as versatile and attractive modalities. Bicyclic peptides represent another type of promising therapeutics that allow for building blocks with a heterotrimeric conjugate to address intractable challenges and enable multimer complexes via linkers. Additionally, we discuss the cell-free chemoenzymatic synthesis of macrocyclic peptides with a non-ribosomal catalase known as the non-ribosomal synthetase (NRPS) and chemo-enzymatic approach, with recombinant thioesterase (TE) domains. Novel insights into the use of peptide library tools, activity-based two-hybrid screening, structure diversification, inclusion of NAAs, combinatorial libraries, expanding the toolbox for macrocyclic peptides, bicyclic peptides, chemoenzymatic strategies, and future perspectives are presented. This review highlights the broad spectrum of strategy classes, novel platforms, structure diversity, chemical space, and functionalities of macrocyclic peptides enabled by emerging biosynthetic platforms to achieve bioactivity and for therapeutic purposes.  相似文献   

3.
Synthetic peptides have a long tradition as molecular tools in biomedical research and drug discovery. The introduction of high-throughput synthesis and screening technologies for synthetic peptides, such as arrays and combinatorial libraries, enabled the large-scale and detailed exploration of protein-ligand interactions, as well as the discovery of novel biologically active peptides. This review summarizes currently available synthetic peptide array and library technologies, in particular mixture-based peptide libraries, which are illustrated by numerous applications in various fields of biomedical research.  相似文献   

4.
The unique functions of carbohydrates, including energy storage, transport, modulation of protein function, intercellular adhesion, signal transduction, malignant transformation, and viral and bacterial cell-surface recognition, underlie a significant pharmaceutical potential. The development of combinatorial carbohydrate libraries in this important arena has been slow, in contrast to the rapid development of combinatorial synthesis in the area of small-molecule libraries and biopolymers. This is largely as a result of the inherent difficulties presented by this class of polyfunctional compounds. Nevertheless, strategies to cope with these problems have been devised over the past seven years, and combinatorial carbohydrate libraries have appeared. The incorporation of an amino acid moiety into the carbohydrate scaffold generates glycosamino acids, which are attractive building blocks for the preparation of carbohydrate-based libraries because of the well-established automated peptide synthesis. Derivatization as well as homo- and heterooligomerization of glycosamino acids can be used to create novel structures with unique properties. Glycosamino acids are hybrid structures of carbohydrates and amino acids which can be utilized to generate potential glycomimetics and peptidomimetics. The incorporation of glycosamino acids into peptides allows the engineering of carbohydrate-binding sites into synthetic polypeptides, which may also influence the pharmacokinetic and dynamic properties of the peptides. Furthermore, sugar-amino acid hybrids offer a tremendous structural and functional diversity, which is largely unexplored and requires combinatorial strategies for efficient exploitation. This article provides an overview of previous work on glycosamino acids and discusses their use in combinatorial synthesis and drug discovery. Supporting information for this article is available on the WWW under http://www.angewandte.com or from the author.  相似文献   

5.
Rapid developments in the biotechnology of new proteins, as well as advances in immunology and the development of pharmaceuticals based on inhibitors and antagonists, have led to immense demands for synthetic peptides. Simultaneous preparation of 100–150 completely different peptides, having chain lengths of up to 20 amino acids can nowadays be achieved using multiple synthesis methods. The yields and qualities of the peptides so obtained are high enough to permit reliable in vivo and in vitro screening for biological activities. Moreover, it is possible to optimize synthetic conditions and to carry out comparative studies on the secondary structures and conformational mapping of proteins. Special multiple synthesis methods facilitate the epitope mapping of larger peptides for diagnostic purposes and for the development of vaccines based on a few hundreds of free or rod-bound peptides that are useful for immunoassays. Multiple methods of peptide synthesis also enable the preparation of so-called peptide libraries which could comprise hundreds of thousands of peptides, and by which new perspectives for the screening of lead structures will be opened up. Peptide synthesis using a combination of photolabile protecting groups and photolithographic procedures enables the assembling of peptide libraries on small plates for use in miniature immunoassays. Furthermore, lipopeptide-antigen conjugates allow both the preparation of peptide-specific and monoclonal antibodies as well as a complete screening of epitopes of B-, T-helper and T-killer cells. Applications in the areas of AIDS diagnosis, the development of vaccines, and screening for the hormone analogues, demonstrate just some of the possibilities that have been opened up by multiple peptide synthesis methods.  相似文献   

6.
Peptide drug discovery often benefits from the large structural diversity permitted by unnatural amino acids (UAAs). Indeed, numerous approved peptide drugs include UAAs in their sequences. Therefore, innovative chemical approaches either to synthesize UAAs or to allow late-stage functionalization of peptides are emerging themes in peptide drug discovery. Thanks to the recent advances in deaminative strategies using alkylpyridiniums salts, often referred to as Katritzky salts, a variety of radical alkylation methods have been developed. In recent years the use of Katritzky salts have become popular in peptide chemistry due to their ease of preparation from a primary amine, which is a predominant functional group in amino acids. This review highlights the progress that has been made by using Katritzky salts in the synthesis of UAAs, late-stage peptide functionalization, and peptide macrocyclization.  相似文献   

7.
Cyclic peptides provide attractive lead compounds for drug discovery and excellent molecular probes in biomedical research. In this work, a novel method has been developed for the high-throughput synthesis, screening, and identification of cyclic peptidyl ligands against macromolecular targets. Support-bound cyclic phosphotyrosyl peptide libraries containing randomized amino acid sequences and different ring sizes (theoretical diversity of 3.2 x 10(6)) were synthesized and screened against the SH2 domains of Grb2 and tensin. Potent, selective inhibitors were identified from the libraries and were generally more effective than the corresponding linear peptides. One of the inhibitors selected against the Grb2 SH2 domain inhibited human breast cancer cell growth and disrupted actin filaments. This method should be applicable to the development of cyclic peptidyl inhibitors against other protein domains, enzymes, and receptors.  相似文献   

8.
Previously, we developed a methodology for the solid‐phase screening of peptide libraries for interaction with double‐stranded deoxyribonucleic acids (dsDNA). In the search for new and more‐potent DNA ligands, we investigated the strategy of solution‐phase screening of chemical libraries consisting of unnatural oligopeptides. After synthesis of the selected amino acid building blocks, libraries were constructed with the general structure Ac‐Arg‐Ual‐Sar‐X1‐X2‐X3‐Arg‐NH2, where X represents each of twelve unnatural or natural amino acids. Optimization of the sequence of binding peptides was performed with an iterative deconvolution procedure. Selection of interacting peptides was carried out in solution by means of gel‐retardation experiments, starting with libraries of 144 compounds. A 14‐base‐pair double‐stranded DNA fragment was chosen as the target. After several cycles of synthesis and screening of libraries and individual peptides, an oligopeptide was selected with an apparent dissociation constant of 9⋅10−5 M , as determined by gel‐retardation experiments. This peptide was studied by NMR spectroscopy. A certain degree of conformational pre‐organization of the peptides was shown by temperature‐dependent circular‐dichroism experiments. Finally, DNase‐I‐footprinting studies indicated a preferential interaction with a 6‐base‐pair mixed sequence 5′‐CTGCAT‐3′. This study demonstrates that gel‐shift experiments can be used for the solution‐phase screening of library mixtures of peptides against dsDNA. In general, this technique allows the selection of new sequence‐selective dsDNA‐interacting molecules. Furthermore, novel dsDNA‐binding unnatural oligopeptides were developed with affinities in the 0.1 mM range.  相似文献   

9.
Rapid synthesis and screening of compound libraries enables the accelerated identification of novel protein ligands in order to support processes like analysis of protein interactions, drug target discovery or lead structure discovery. SPOT synthesis—a well established method for the rapid preparation of peptide arrays—has recently been extended to the field of nonpeptides. In this contribution we report on the systematic evaluation of the SPOT technique for the assembly of N-alkylglycine (peptoid) library arrays. In the course of this investigation bromoacetic acid 2,4-dinitrophenylester (1a) was identified to be the most suited agent for bromoacetylation in terms of yield and N-selectivity enabling straightforward submonomer synthesis on hydroxy-group rich cellulose membranes. The potential of this method for the rapid identification of novel nonpeptidic protein ligands was demonstrated by synthesis and screening of a library consisting of 8000 peptoids and peptomers (i.e. their hybrids with α-substituted amino acids) allowing the identification of micromolar ligands for the monoclonal antibody Tab-2.  相似文献   

10.
[reaction: see text] A synthesis of 4,8-disubstituted 2-phenylquinoline amino acids is reported with the incorporation of one example into a peptide by solid-phase synthesis. The phenylquinoline-containing peptide binds an RNA target with nanomolar affinity (K(D) = 208 nM). The strategy can be used to prepare a variety of 2-substituted quinoline amino acids for alteration of affinity in intercalator peptides. Since quinolones represent an important class of antibacterials, these compounds may be useful in the discovery of new antibacterial agents.  相似文献   

11.
We present a new approach for the conversion of active sequences of proteins and peptides into small molecules. A library of macrocyclic disulfide molecules was made, in which the active pharmacophores of the parent peptide are preserved while the size of the macromolecular scaffold on which the pharmacophores are arranged is varied. This enables a systematic search for macromolecules in which the pharmacophores are in an appropriate conformation for biological activity. We developed two procedures for the synthesis of such libraries from building blocks that include commercial amino acids and functionalized aldehydes. Chemical synthesis using the "tea-bag" method gave a library with higher diversity, but low yields, compared to the manual synthesis of the library, in which the compounds were synthesized in individual vessels and the yield and purity improved dramatically. As a proof of concept, we synthesized a 34-member library derived from the sequence of the activation loop of insulin-like growth factor-1 receptor. Selected compounds were screened, and one was found to be biologically active in the low micromolar range. The concept presented here may prove particularly useful in cases where the pharmacophores are known but need to be systematically screened for a spatial arrangement that will enable biological activity.  相似文献   

12.
[reaction: see text] Fluorinated amino acids are useful building blocks for the preparation of biologically active peptides and peptidomimetics with increased metabolic stability. We report here the synthesis of two fluorinated amino acids, beta-difluoroalanine and gamma-difluorothreonine, as analogues of Ser and Thr, respectively. These compounds were suitably protected for Fmoc-based solid-phase peptide synthesis. Once incorporated into peptides, they may serve as alternative substrates or inhibitors of lantibiotic synthetases that posttranslationally dehydrate Ser and Thr residues to dehydroalanine and dehydrobutyrine, respectively.  相似文献   

13.
Solid phase peptide synthesis (SPPS) provides peptides with a dendritic topology when diamino acids are introduced in the sequences. Peptide dendrimers with one to three amino acids between branches can be prepared with up to 38 amino acids (MW ~ 5,000 Da). Larger peptide dendrimers (MW ~ 30,000) were obtained by a multivalent chloroacetyl cysteine (ClAc) ligation. Structural studies of peptide dendrimers by CD, FT-IR, NMR and molecular dynamics reveal molten globule states containing up to 50% of α-helix. Esterase and aldolase peptide dendrimers displaying dendritic effects and enzyme kinetics (k(cat)/k(uncat) ~ 10(5)) were designed or discovered by screening large combinatorial libraries. Strong ligands for Pseudomonas aeruginosa lectins LecA and LecB able to inhibit biofilm formation were obtained with glycopeptide dendrimers. Efficient ligands for cobalamin, cytotoxic colchicine conjugates and antimicrobial peptide dendrimers were also developed showing the versatility of dendritic peptides. Complementing the multivalency, the amino acid composition of the dendrimers strongly influenced the catalytic or biological activity obtained demonstrating the importance of the "apple tree" configuration for protein-like function in peptide dendrimers.  相似文献   

14.
Combinatorial libraries of non-biological polymers and drug-like peptides could in principle be synthesized from unnatural amino acids by exploiting the broad substrate specificity of the ribosome. The ribosomal synthesis of such libraries would allow rare functional molecules to be identified using technologies developed for the in vitro selection of peptides and proteins. Here, we use a reconstituted E. coli translation system to simultaneously re-assign 35 of the 61 sense codons to 12 unnatural amino acid analogues. This reprogrammed genetic code was used to direct the synthesis of a single peptide containing 10 different unnatural amino acids. This system is compatible with mRNA-display, enabling the synthesis of unnatural peptide libraries of 10(14) unique members for the in vitro selection of functional unnatural molecules. We also show that the chemical space sampled by these libraries can be expanded using mutant aminoacyl-tRNA synthetases for the incorporation of additional unnatural amino acids or by the specific posttranslational chemical derivitization of reactive groups with small molecules. This system represents a first step toward a platform for the synthesis by enzymatic tRNA aminoacylation and ribosomal translation of cyclic peptides comprised of unnatural amino acids that are similar to the nonribosomal peptides.  相似文献   

15.
The high-throughput synthesis and screening of compound libraries hold tremendous promise for drug discovery and powerful methods for both solid-phase and solution-phase library preparation have been introduced. The question of which approach (solution-phase versus solid-phase) is best for the preparation of chemical libraries has been replaced by which approach is most appropriate for a particular target or screen. Herein we highlight distinctions in the two approaches that might serve as useful considerations at the onset of new programs. This is followed by a more personal account of our own focus on solution-phase techniques for the preparation of libraries designed to modulate cellular signaling by targeting protein-protein or protein-DNA interactions. The screening of our libraries against a prototypical set of extracellular and intracellular targets, using a wide range of assay formats, provided the first small-molecule modulators of the protein-protein interactions studied, and a generalized approach for conducting such studies.  相似文献   

16.
Cyclic pentapeptides have been adopted as conformationally restricted peptide templates to dispose pharmacophores of bioactive peptides. In our recent study, use of two orthogonal cyclic pentapeptide libraries involving conformation-based and sequence-based libraries containing critical residues of a bioactive peptide led to the discovery of potent downsized peptides that possess activity comparable to that of the parent peptide. The present study demonstrates that a third library consisting of retro-enantiomers (retro-inverso peptides) that possess not only all residues with the opposite configuration to those in the corresponding original peptide but also amino acid sequences with reversed arrangement, is important as an alternative library for rationally finding active compounds.  相似文献   

17.
We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .  相似文献   

18.
Combinatorial chemistry has become an invaluable tool in medicinal chemistry for the identification of new drug leads. For example, libraries of predetermined sequences and head-to-tail cyclized peptides are routinely synthesized in our laboratory using the IRORI approach. Such libraries are used as molecular toolkits that enable the development of pharmacophores that define activity and specificity at receptor targets. These libraries can be quite large and difficult to handle, due to physical and chemical constraints imposed by their size. Therefore, smaller sub-libraries are often targeted for synthesis. The number of coupling reactions required can be greatly reduced if the peptides having common amino acids are grouped into the same sub-library (batching). This paper describes a schedule optimizer to minimize the number of coupling reactions by rotating and aligning sequences while simultaneously batching. The gradient descent method thereby reduces the number of coupling reactions required for synthesizing cyclic peptide libraries. We show that the algorithm results in a 75% reduction in the number of coupling reactions for a typical cyclic peptide library.  相似文献   

19.
Noncanonical peptides occur frequently in Nature, and often display high bioactivity. However, the lack of tractable systems for the synthesis of diverse libraries of such peptides has thus far hampered their development as drugs. Genetic reprogramming techniques, in which noncanonical amino acids may be incorporated into peptides, have largely removed this limitation. This Concept article outlines the development of these techniques with an emphasis on drug discovery.  相似文献   

20.
An efficient approach in combinatorial chemistry is the synthesis of one-bead-one-compound peptide libraries. In contrast to synthesis and functional screening, which is performed in a largely automated manner, structure determination has been frequently laborious and time-consuming. Here we report an approach for de novo sequencing of peptides on single beads by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance (MALDI-FTICR) tandem mass spectrometry, using a resin with a photolinker for solid-phase peptide synthesis. Upon sorting out single beads, an efficient sample preparation on the MALDI target was developed that enables fragmentation upon irradiation of the bead-matrix mixture with the ultraviolet (UV)-MALDI laser, with enhanced yield of sequence-specific fragment ions at increased laser energy. This approach is illustrated by sequence determinations of two peptides from a library with sequences varying in a single amino acid; the feasibility with tandem-MS procedures and fragment ion assignment was ascertained by sustained off-resonance irradiation/collision induced dissociation (SORI/CID) and infrared multiphoton dissociation (IRMPD) fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号