首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We discuss the quark Wigner distributions which represent the quantum-mechanical analogues of the classical phase-space distributions. These functions can be obtained through a Fourier transform in the transverse space of the generalized transverse momentum dependent parton distributions, which encode the most general one-body information of partons in momentum space. In particular, we present a study within light-front quark models. The quark orbital angular momentum is also obtained from the phase-space average of the orbital angular momentum operator weighted with the Wigner distribution of unpolarized quark in a longitudinally polarized nucleon. The corresponding results calculated within different light-front quark models are compared with alternative definitions of the quark orbital angular momentum as given in terms of generalized parton distributions and transverse momentum dependent parton distributions.  相似文献   

3.
We investigate the helicity-dependent generalized parton distributions (GPDs) in momentum as well as transverse position (impact) spaces for the u and d quarks in a proton when the momentum transfer in both the transverse and the longitudinal directions are nonzero. The GPDs are evaluated using the light-front wave functions of a quark–diquark model for nucleon where the wave functions are constructed by the soft-wall AdS/QCD correspondence. We also express the GPDs in the boost-invariant longitudinal position space.  相似文献   

4.
Neetika Sharma 《Pramana》2016,86(2):479-485
We calculate the generalized parton distributions (GPDs) for the up- and down-quarks in nucleon using the effective light-front wavefunction. The results obtained for GPDs in momentum and impact parameter space are comparable with phenomenological parametrization methods.  相似文献   

5.
In recent years parton distributions, describing longitudinal momentum, helicity and transversity distributions of quarks and gluons, have been generalized to account also for transverse degrees of freedom. Two new sets of more general distributions, Transverse Momentum Distributions (TMDs) and Generalized Parton Distributions (GPDs) were introduced to describe transverse momentum and spatial distributions of partons. Great progress has been made since then in measurements of different Single Spin Asymmetries (SSAs) in semi-inclusive and hard exclusive processes, providing access to TMDs and GPDs, respectively. Studies of TMDs and GPDs are also among the main driving forces of the JLab 12 GeV upgrade project.  相似文献   

6.
M. Rinaldi  S. Scopetta 《Few-Body Systems》2013,54(7-10):1087-1090
The two leading twist, quark helicity conserving generalized parton distributions (GPDs) of 3He, accessible, for example, in coherent deeply virtual Compton scattering (DVCS), are calculated in impulse approximation (IA). Their sum, at low momentum transfer, is found to be largely dominated by the neutron contribution, so that 3He is very promising for the extraction of the neutron information. Anyway, such an extraction could be not trivial. A technique, able to take into account the nuclear effects included in the IA analysis in the extraction procedure, even at moderate values of the momentum transfer, is proposed. Coherent DVCS arises therefore as a crucial experiment to access, for the first time, the neutron GPDs and the orbital angular momentum of the partons in the neutron.  相似文献   

7.
In the large momentum transfer limit, generalized parton distributions can be calculated through a QCD factorization theorem which involves perturbatively calculable hard kernels and light-cone parton distribution amplitudes of hadrons. We illustrate this through the H(q)(x,xi,t) distribution for the pion and the proton, presenting the hard kernels at leading order. As a result, experimental data on the generalized parton distributions in this regime can be used to determine the functional form of the parton distribution amplitudes which has thus far been quite challenging to obtain. Our result can also be used as a constraint in phenomenological generalized parton distribution parametrizations.  相似文献   

8.
We present a calculation of the generalized parton distributions of the photon when there is nonzero momentum transfer both in the transverse and longitudinal directions. We consider only the contributions when the photon helicity is not flipped and calculate those at leading order in electromagnetic coupling α and zeroth order in the strong coupling αs. We keep the leading logarithmic terms as well as the quark mass terms in the vertex. By taking Fourier transforms of the GPDs with respect to the transverse and longitudinal momentum transfer, we obtain the parton distributions of the photon in position space.  相似文献   

9.
10.
An analytic method for the solution of the evolution equation for generalized parton distributions (GPDs) is presented. The small x, xi asymptotics of GPDs are calculated.  相似文献   

11.
We discuss a new leading-order parameterization of generalized parton distributions of the proton, which is based on the idea of duality. In its minimal version, the parameterization is defined by the usual quark singlet parton distributions and the form factors of the energy-momentum tensor. We demonstrate that our parameterization describes very well the absolute value, the Q2-dependence and the W-dependence of HERA data on the total DVCS cross section and contains no free parameters in the HERA kinematics. The parameterization suits the low-xBj region especially well, which allows us to advocate it as a better alternative to the frequently used double distribution parameterization of the GPDs. PACS  13.60.-r, 12.38.Lg  相似文献   

12.
We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer through the scattering off a parton in the proton. We relate the two-photon exchange amplitude to the generalized parton distributions which appear in hard exclusive processes. We find that when taking the polarization transfer determinations of the form factors as input, adding in the 2-photon correction does reproduce the Rosenbluth cross sections.  相似文献   

13.
The HERMES Collaboration installed a new Recoil Detector to upgrade the existing spectrometer to study hard exclusive processes which provide access to generalised parton distributions (GPDs) and hence to the orbital angular momentum of quarks. The HERMES Recoil Detector mainly consists of three components: a silicon detector surrounding the target cell inside the beam vacuum, a scintillating fibre tracker and a photon detector with three layers of tungsten and scintillator bars in three different orientations. All three detectors are located inside a solenoidal magnet which provides a 1T longitudinal magnetic field. The Recoil Detector was installed in January 2006 and data taking will last until July of 2007.  相似文献   

14.
Generalized parton distributions (GPDs) extracted from exclusive meson leptoproduction within the handbag approach are briefly reviewed. Only the GPD E is discussed in some detail. Applications of these GPDs to virtual Compton scattering (DVCS) and to Ji’s sum rule are also presented.  相似文献   

15.
Recently, coherent deeply virtual Compton scattering (DVCS) off 3He nuclei has been proposed to access the neutron generalized parton distributions (GPDs). In impulse approximation (IA) studies, it has been shown, in particular, that the sum of the two leading twist, quark helicity conserving GPDs of 3He, H and E, at low momentum transfer, is dominated by the neutron contribution, so that 3He is very promising for the extraction of the neutron information. Nevertheless, such an extraction could be not trivial. A technique, able to take into account the nuclear effects included in the IA analysis in the extraction procedure, has been therefore developed. In this work, the IA calculation of the spin dependent GPD \({\tilde H}\) of 3He is presented for the first time. This quantity is found to be largely dominated, at low momentum transfer, by the neutron contribution, which could be extracted using arguments similar to the ones previously proposed for the other GPDs. The known forward limit of the IA calculation of \({\tilde H}\) , yielding the polarized parton distributions of 3He, is correctly recovered. The knowledge of the GPDs H, E and \({\tilde H}\) of 3He will allow now the evaluation of the cross section asymmetries which are relevant for coherent DVCS off 3He at Jefferson Lab kinematics, an important step towards the planning of possible experiments.  相似文献   

16.
COMPASS-II     
On December 1st 2010 the proposal of the COMPASS-II Experiment [1] has been approved by the CERN Research Board. After almost ten years of important results achieved by the COMPASS Collaboration in both nucleon spin physics, with the use of muon beam, and hadron spectroscopy, using hadron beams, this second phase offers now a unique chance to address in the very near future newly opened QCD-related challenges, at very moderate upgrade cost, thanks to the versatility of the COMPASS apparatus [2]. This implies mainly study of chiral perturbation theory (ChPT), by measuring the pion polarizability through Primakoff reaction; generalized parton distributions (GPDs), by measuring exclusive deeply virtual compton scattering (DVCS) and hard exclusive meson production (DVMP); transverse momentum dependent parton distributions (TMDs) in single-polarised pion-induced Drell-Yan muon production and in SIDIS on a liquid hydrogen target (in parallel to DVCS). An overview of the COMPASS-II proposal is presented here, with a main focus on the new upcoming investigation of the nucleon structure via the Drell-Yan and DVCS processes.  相似文献   

17.
Parton distributions in impact parameter space, which are obtained by Fourier transforming GPDs, exhibit a significant deviation from axial symmetry when the target and/or quark are transversely polarized. Connections between this deformation and transverse single-spin asymmetries as well as with quark–gluon correlations are discussed. The sign of transverse deformation of impact parameter dependent parton distributions in a transversely polarized target can be related to the sign of the contribution from that quark flavor to the nucleon anomalous magnetic moment. Therefore, the signs of the Sivers function for u and d quarks, as well as the signs of quark–gluon correlations embodied in the polarized structure function g 2 can be understood in terms of the proton and neutron anomalous magnetic moments.  相似文献   

18.
To leading order approximation, the physical content of generalized parton distributions (GPDs) that is accessible in deep virtual electroproduction of photons or mesons is contained in their value on the cross-over trajectory. This trajectory separates the t-channel and s-channel dominated GPD regions. The underlying Lorentz covariance implies correspondence between these two regions through their relation to GPDs on the cross-over trajectory. This point of view leads to a family of GPD sum rules which are a quark analogue of finite energy sum rules and it guides us to a new phenomenological GPD concept. As an example, we discuss the constraints from the JLab/Hall A data on the dominant u-quark GPD H. The question arises whether GPDs are governed by some kind of holographic principle.  相似文献   

19.
The orbital angular momentum of quarks and gluons contributes significantly to the proton spin budget and attracted a lot of attention in the recent years, both theoretically and experimentally. We summarize the various definitions of parton orbital angular momentum together with their relations with parton distributions functions. In particular, we highlight current theoretical puzzles and give some prospects.  相似文献   

20.
We discuss how generalized parton distributions (GPDs) enter in a variety of hard exclusive processes such as deeply virtual Compton scattering (DVCS) and hard meson electroproduction reactions on the nucleon. We show some key observables which are sensitive to the various hadron structure aspects of the GPDs, and discuss their experimental status.Received: 30 September 2002, Published online: 22 October 2003PACS: 13.60.Fz Elastic and Compton scattering - 13.60.Le Meson production - 12.38.Bx Perturbative calculations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号