首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We investigated the effects of combination of noble metals M (Rh, Pd, Ir, Pt) and metal oxide supports S (Al2O3, SiO2, ZrO2, CeO2) on the NO + H2 reaction using planar catalysts with M/S two layered thin films on Si substrate. In this study, NO reduction ability per metal atom were evaluated with a specially designed apparatus employing pulse valves for the injection of reactant molecules onto catalysts and a time-of-flight mass spectrometer to measure multiple transient products: NH3, N2 and N2O simultaneously as well as with an atomic force microscopy to observe the surface area of metal particles. The catalytic performances of Rh and Ir catalysts were hardly affected by a choice of a metal oxide support, while Pd and Pt catalysts showed different catalytic activity and selectivity depending on the metal oxide supports. This assortment is consistent with ability to dissociate NO depending on metals without the effect of any support materials. There, the metals to the left of Rh and Ir on the periodic table favor dissociation of NO and those to the right of Pd and Pt tend to show molecular adsorption of NO. Therefore, the catalytic property of noble metals could be assorted into two groups, i.e. Rh and Ir group whose own property would mainly dominate the catalytic performance, and Pd and Pt group whose interaction with metal oxides supports would clearly contribute to the reaction of NO with H2. NO reduction activity of Pd and Pt was found to be promoted above that of Rh and Ir, provided that Pd and Pt were supported by CeO2 and ZrO2.  相似文献   

2.
Series of bimetallic systems were prepared by replacement reactions and characterized by XRD and XPS. The results suggest that the ad-metals are monolayer dispersed on the surface of sub-metal in Pd(Pt, Cu)/Co(Ni) systems, while in Pd(Pt, Au)/Cu systems surface solid solution is formed. In Ag(Au)/Co(Ni) and Ag/Cu systems no interaction between the metals is observed just as in the simple mixture of the respective crystallites. The outermost electronic configurations, the atomic radius of the metals, and the low-preparation temperature seem to be important factors for the different states of these bimetallic catalysts.  相似文献   

3.
Using first-principles calculation, we have studied the properties of a series of M x Co1?x /Co(0001) (M = Pd, Pt) bimetallic surface alloys with atom M ratios from 0.25 to 1.0, then the effect of alloyed M metal on the properties of S adsorbed on these surfaces are discussed. Our calculations show that the alloying of metal Pd, Pt on Co(0001) weakens the S-M (M = Pd, Pt, Co) bond strength compared to monometallic surfaces and the site preference of sulfur atom is dependent on the alloyed metal M and its surface concentration. Moreover, bimetallic surface electronic structure modifications with and without sulfur are analyzed in comparison with clean Co(0001), and the correlation between the sulfur adsorption energy and the bimetallic surface d-band center is presented.  相似文献   

4.
用发射光谱分析法检测微量贵金属   总被引:3,自引:0,他引:3  
Pt,Pd,Rh,Au能溶于王水及盐酸加双氧水中,而Rh溶于热硫酸或浓盐酸加氯酸钙,试验中可用王水溶矿,在王水或盐酸介质和氯化亚锡存在下用负载二苯基硫脲的混合碳粉富集痕量的Pt(Ⅱ)、Pd(Ⅱ),Rh(Ⅰ),Au(Ⅱ)络合物,吸附载体灰化后用发光谱测定,测定灵敏度达到了1×10^-9。  相似文献   

5.
Many late transition binary alloy nanoparticles (NPs) have been fabricated through a wide variety of techniques. Various steps are involved in the fabrication of such NPs. Here, we used a simple and green route to fabricate solid-solution Rh–Pd and Rh–Pt bimetallic alloy NPs through femtosecond laser irradiation in a solution without any chemicals like reducing agents. X-ray diffraction (XRD) peaks of NPs obtained in the solutions with different ratios of Rh–Pd and Rh–Pt ions monotonically varied from the position of pure Rh to those of Pd and to Pt which respectively indicated that these NPs were alloy. Composition of fabricated NPs was fully tuned over the entire range of Rh1?x –Pd x , and Rh1?x –Pt x with varying the mixing ratio of metal ions in the solution. Studies of Rh–Pd and Rh–Pt solid-solution system suggest that the alloy formation occurs through the nucleation of Rh and then followed by the diffusion of Rh, Pd and Rh, Pt to form a homogeneous alloy. The variety of average size of the alloy NPs for different compositions could be attributed to different reduction rate and surface energies of metal ions. Our result implies that femtosecond laser irradiation in aqueous solution is one of the potential methodologies to form multimetallic solid-solution alloy NPs with fully tunable composition.  相似文献   

6.
Transition metals are often introduced to a catalyst as promoters to improve catalytic performance. In this work, we study the promotion effect of transition metals on Co, the preferred catalytic metal for Fischer–Tropsch synthesis because of its good compromise of activity, selectivity and stability, for ethylene chemisorption using density functional theory (DFT) calculations, aiming to provide some insight into improving the α-olefin selectivity. In order to obtain the general trend of influence on ethylene chemisorption, twelve transition metals (Zr, Mn, Re, Ru, Rh, Ir, Ni, Pd, Pt, Cu, Ag and Au) are calculated. We find that the late transition metals (e.g. Pd and Cu) can decrease ethylene chemisorption energy. These results suggest that the addition of the late transition metals may improve α-olefin selectivity. Electronic structure analyses (both charge density distributions and density of states) are also performed and the understanding of calculated results is presented.  相似文献   

7.
The metal-catalyzed reduction of di-oxygen (O2) by hydrogen is at the heart of direct synthesis of hydrogen peroxide (HOOH) and power generation by proton exchange membrane fuel cells. Despite its apparent simplicity, how the reaction proceeds on different metals is not yet well understood. We present a systematic study of O2 reduction on the (111) facets of eight transition metals (Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) based on periodic density functional theory (DFT-GGA) calculations. Analysis of ten surface elementary reaction steps suggests three selectivity regimes as a function of the binding energy of atomic oxygen (BEO), delineated by the opposite demands to catalyze O–O bond scission and O–H bond formation: The dissociative adsorption of O2 prevails on Ni, Rh, Ir, and Cu; the complete reduction to water via associative (peroxyl, peroxide, and aquoxyl) mechanisms prevails on Pd, Pt, and Ag; and HOOH formation prevails on Au. The reducing power of hydrogen is decreased electrochemically by increasing the electrode potential. This hinders the hydrogenation of oxygen species and shifts the optimal selectivity for water to less reactive metals. Our results point to the important role of the intrinsic reactivity of metals in the selectivity of O2 reduction, provide a unified basis for understanding the metal-catalyzed reduction of O2 to H2O and HOOH, and offer useful insights for identifying new catalysts for desired oxygen reduction products.  相似文献   

8.
Intraparticle charge delocalization occurs when metal nanoparticles are functionalized with organic capping ligands through conjugated metal-ligand interfacial bonds. In this study, metal nanoparticles of 5d metals (Ir, Pt, and Au) and 4d metals (Ru, Rh, and Pd) were prepared and capped with ethynylphenylacetylene and the impacts of the number of metal d electrons on the nanoparticle optoelectronic properties were examined. Both FTIR and photoluminescence measurements indicate that intraparticle charge delocalization was enhanced with the increase of the number of d electrons in the same period with palladium being an exception.  相似文献   

9.
Hydrophobic bimetallic catalysts of Pt-M on styrenedivinylbenzene were prepared, where M represents successively: Ir, Rh, Pd, Cu and Ag. The total metal loading was 0.5 wt% and the weight fractions of the metal M were: 0.0,0.05,0.1,0.25,0.5,0.75 and 1.0. For each sample, the catalytic activity for H/D exchange between hydrogen and water vapor was measured. In case of monometallic catalysts, no activity was detected for M = Cu and M = Ag, and the order of the activity values for the other metals was: Pt < Ir < Rh < Pd. For each bimetallic catalyst, the activity measurements indicated a clear interaction between the platinum and the second metal, thus the activity was significantly increased for M = Ir, increased for M = Rh, decreased for M = Pd, drastically decreased for M = Cu and M = Ag.  相似文献   

10.
fcc金属层错能的EAM法计算   总被引:10,自引:0,他引:10       下载免费PDF全文
采用嵌入原子法(EAM)计算了Cu,Ag,Au,Ni,Al,Rh,Ir,Pd,Pt和Pb等10种面心立方(fcc)金属的层错能,除Rh和Ir两种金属外,其他金属的计算结果和实验结果基本一致. 关键词: 面心立方金属 层错能 EAM  相似文献   

11.
The build-up of intermediate species on the surface of TiO2 during gas-phase toluene (C7H8) photodegradation has been observed to deactivate the photocatalyst. Nanosized metallic deposits on the TiO2 surface may enhance the photocatalytic process and improve photocatalyst performance. In this study, noble (Ag, Au) and platinum group (Pt, Pd, Rh) metals, at a nominal loading of 0.5 at.%, were deposited onto Degussa P25 TiO2 to enhance photocatalyst performance and inhibit deactivation. Pd, Rh and Au deposits delayed photocatalyst deactivation by a factor of 2, while Pt deposits delayed photocatalyst deactivation by a factor of 20, when compared with neat TiO2. Ag deposits did not improve photocatalyst activity. Metal deposit performance was related to the work function of each metal, however, the Pt finding suggested that these effects are not governed solely by this aspect, but factors such as deposit characteristics and/or thermal catalytic properties of the metals may be influential.  相似文献   

12.
The process of the formation of nanocontacts has been studied by the molecular dynamics methods for a group of metals (Cu, Rh, Pd, Ag, Pt, Au). It has been shown that the disruption forces of nanocontacts substantially depend on the orientation ((100), (110), or (111)) of the contact-surface interface. The possibility of forming linear atomic chains as a result of the disruption of nanocontacts has been analyzed for different orientations of the electrode surfaces. The possibility of forming quasi-one-dimensional nanostructures from the Co/Au alloy, which represent a periodic alternation of gold atoms and cobalt trimers, has been predicted.  相似文献   

13.
Simple pseudopotential model for the binding energy of transition metals is proposed. The contribution of thes-like electrons is calculated in the second-order perturbation theory for the local model pseudopotential while that of thed-like electrons is taken into account by introduction of repulsive short-range interatomic potential. Model parameters were determined for ten fcc transitions metals (Cu, Ni, Fe, Co, Ag, Pd, Rh, Au, Pt, and Ir). This model was used for the calculation of the phonon dispersion and the density of states, as well as for the elastic constants and their pressure derivatives. Good agreement with experimental data was achieved for the overall shape of phonon spectra and even for the position of the Kohn anomalies in Pd and Pt. Existence of such anomalies is also stated for predicted phonon spectra of rhodium and iridium.  相似文献   

14.
The strain field due to body centered substitutional transition metal impurities in Ni and Pd metals are investigated. The calculations are carried out in the discrete lattice model of the metal using Kanzaki lattice static method. The effective ion-ion interaction potential due to Wills and Harrison is used to evaluate dynamical matrix and the impurity-induced forces. The results for atomic displacements due to 3d, 4d and 5d impurities (Fe, Co, Cu, Nb, Mo, Pd, Pt and Au) in Ni and (Fe, Co, Cu, Ni, Nb, Mo, Pt and Au) impurities in Pd are given up to 25 NN’s of impurity and these are compared with the available experimental data. The maximum displacements of 4.6% and 3.8% of 1NN distance are found for NiNb and PdNb alloys respectively, while the minimum displacements of 0.63% and 0.23% of 1NN distance are found for NiFe and PdFe alloys respectively. Except for Cu, the atomic displacements are found to be proportional to the core radii and d state radius. The relaxation energies for 3d impurities are found less than those for 4d and 5d impurities in Ni and Pd metals. Therefore, 3d impurities may easily be solvable in these metals.  相似文献   

15.
The energies of the ideal, missing row (MR) and missing column (MC) (1 1 0) surfaces have been calculated by using modified embedded atom method (MEAM) for seven face centered cubic (FCC) transition metals Au, Pt, Ag, Pd, Rh, Cu and Ni. The results, that the MC reconstruction can not be formed for all metals, while the MR reconstruction can be formed naturally for Au and Pt, inductively for Ag, Pd, Rh and Cu and difficultly for Ni, are better than EAM calculated results in comparing with experimental results. In addition to the surface energy explanation, the results are also related to the surface topography and valence electron structure.  相似文献   

16.
First principles calculations based on spin-polarized density functional theory were used to identify metallic adatoms that would strengthen the Pt(111)/graphene interface (with a low work of separation of 0.009 J m(-2)), when the adatom was placed between the Pt(111) and the graphene. It was shown that the strength of the Pt-adatom bond, which had a metallic character, increased with the amount of charge transferred from the adatom to the Pt. The carbon-adatom bond, on the other hand, had a mixed ionic and covalent character and was weaker than the Pt-adatom bond for each of the 25 elements considered. Consequently, the total Pt(111)/graphene interface strength and, hence, the anchoring effect of the adatom were controlled by the carbon-adatom bond strength. Metals with unfilled d orbitals increased the Pt/graphene interface strength to above 0.5 J m(-2). The carbon-adatom bond strength was proportional to the ratio between the charge transferred from the adatom to the graphene (ΔZ(C)) and the charge transferred to the Pt surface (ΔZ(Pt)); i.e., the ΔZ(C)/ΔZ(Pt) ratio defined the ability of an adatom to anchor Pt to graphene. For Ir, Os, Ru, Rh and Re, ΔZ(C)/ΔZ(Pt) > 1.0, making these elements the most effective adatoms for anchoring Pt to graphene.  相似文献   

17.
Growth and oxidation of Au, Pt, Pd, Rh, Cu, Ru, Ni and Co layers of 0.3-4.3 nm thickness on Mo have been investigated with ARPES and AFM. Co and Ni layers oxidize while the Mo remains metallic. For nobler metals, the on top O and oxidation state of subsurface Mo increase, suggesting sacrificial e donation by Mo. Au and Cu, in spite of their significantly lower surface free energy, grow in islands on Mo and actually promote Mo oxidation. Applications of the sacrificial oxidation in nanometer thin layers exist in a range of nanoscopic devices, such as nano-electronics and protection of e.g. multilayer X-ray optics for astronomy, medicine and lithography.  相似文献   

18.
Small clusters of 3d metals Ni/Ni(001), Cu/Cu(001), 4d-Pd/Pd(001), Ag/Ag(001), 5d-Pt/Pt(001), and Au/Au(001) are investigated by semiempirical methods using multiparticle interatomic interaction potentials. It is shown that the same magic numbers (4, 6, and 9) are characteristic for all metals indicated; these numbers are determined by the symmetry characteristics of the clusters, related to the morphology of the fcc (001) substrate. It is shown for Pt/Pt(111) that small clusters of seven, ten, and more atoms are stable for the fcc (111) surface. This confirms that the magic numbers are associated with the symmetry of the clusters. Fiz. Tverd. Tela (St. Petersburg) 41, 1329–1334 (July 1999)  相似文献   

19.
Formation of noble metal particles by ultrasonic irradiation   总被引:3,自引:0,他引:3  
It was found that sonochemically prepared metal particles such as Ag, Pd, Au, Pt and Rh are of nanometer size with a fairly narrow distribution (e.g., about 5 nm for Pd particles obtained from a 1.0 mM Pd(II) in polyethylene glycol monostearate solution). We have suggested three different reduction pathways under sonication: (i) reduction by H atoms, (ii) reduction by secondary reducing radicals formed by hydrogen abstraction from organic additives with OH radicals and H atoms, (iii) reduction by radicals formed from pyrolysis of the additives at the interfacial region between cavitation bubbles and the bulk solution. The reduction of Ag(I) and Pt(II) mainly proceeds through reaction pathway (ii). In the cases of Pd(II) and Au(III), the reductions mainly proceed through reaction pathway (iii). The reduction of Rh(III) was not achieved under the same conditions; however, by the addition of sodium formate, reduction occurred and the preparation of Rh particles succeeded.  相似文献   

20.
We investigate the diffusion of a single metal atom on the surface of a fcc (001) metal. Two points concerning the application of kinetic models to diffusion were considered. First, we test the assumption of kinetic models that diffusion occurs via a sequence of uncorrelated jumps. Second, when kinetic models are applicable we predict reasonable values of the kinetic rate constants.

Direct molecular dynamics (MD) simulations were performed for Ag on Ag(001) and Rh on Rh(001) systems. Diffusion was found to obey an Arrhenius-type dependence on temperature in both systems. The barriers and prefactors extracted from the MD results agree with estimates made from transition state theory (TST) and the experimental values for the Rh system. We conclude that kinetic models are applicable to diffusion on fcc (001) surfaces.

Transition state theory was then used to estimate diffusion parameters for all other adsorbate/ substrate combinations of the metals Ni, Cu, Rh, Pd, Ag, Pt, and Au. These results indicate that the characteristics of diffusion are primarily a property of the adsorbate. We also predict Ag atoms to have an anomalously low diffusion barrier on all of the substrates in this study. We use the accurate many-body density functional based MD/MC-CEM potential energy surface which allows us to consistently treat these multi-component systems.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号