首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zirconium oxide nanoparticle (ZrO2) is synthesized by the hydrothermal method at different calcination temperatures. The structural analysis is carried out by X-ray diffraction and Raman spectra. The sample prepared at 400 °C and 1100 °C showed the cubic and monoclinic phase, respectively, and the sample calcined at 600 °C and 800 °C showed the mixed phase with co-existence of cubic and monoclinic phases. Furthermore, the morphology and particle size of these samples were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. The band gap estimated from UV–Vis spectra of ZrO2 (zirconia) nanocrystalline materials calcined at different temperatures from 400 °C to 1100 °C was in the range of 2.6–4.2 eV. The frequency dependence of dielectric constant and dielectric loss was investigated at room temperature. The low frequency region of dielectric constant is attributed to space charge effects.  相似文献   

2.
Bulk nanocomposites ZnO–SnO2–TiO2 were synthesized by solid-state reaction method. The X-ray diffraction patterns and Raman spectra of bulk nanocomposite as a function of sintering temperature (700 °C–1300 °C) indicate that the structural phases of SnO2 and TiO2 depend on the sintering temperature while the ZnO retains its hexagonal wurtzite phase at all sintering temperatures and SnO2 started to transform into SnO at 900 °C and completely converted into SnO at 1100 °C, whereas the titanium dioxide (TiO2) exhibits its most stable phase such as rutile at low sintering temperature (≤900°C) and it transforms partially into brookite phase at high sintering temperature (≥ 900 °C). The optical band gap of nanocomposite ZnO–SnO2–TiO2 sintered at 700 °C, 900 °C, 1100 °C and 1300 °C for 16 hours is calculated using the transformed diffuse reflectance ultra violet visible near infra red (UV–VisNIR) spectra and has been found to be 3.28, 3.29, 3.31 and 3.32 eV, respectively.  相似文献   

3.
ZrO2–mullite nanocomposites were fabricated by in-situ-controlled crystallization of Si–Al–Zr–O amorphous bulk at 800–1250°C. The structural evolution of the Si–Al–Zr–O amorphous, annealed at different temperatures, was studied by X-ray diffraction, infrared, Laser Raman spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy. The materials consisted of an amorphous phase up to 920°C at which phase separation of Si-rich and Al, Zr-rich clusters occurred. The crystalline phases of t-ZrO2 and mullite were observed at 950°C and 1000°C, respectively. Mullite with a tetragonal structure, formed by the reaction between Al–Si spinel and amorphous silica at low temperature, changed into an orthorhombic structure with the increase of temperature. It was the phase segregation that improved crystallization of the Si–Al–Zr–O amorphous bulk. The anisotropic growth of mullite was observed and the phase transformation from t-ZrO2 to m-ZrO2 occurred when the temperature was higher than 1100°C.  相似文献   

4.
《光谱学快报》2013,46(5-6):441-447
The effect of silver, as an aqueous solution of AgNO3, on the pretreatment and atomization behaviour of As, Cd, Bi, Hg, Pb, Sb, Se, Sn and Tl during electrothermal atomic absorption spectrometry has been investigated. The presence of silver in the graphite furnace leads to thermal stabilisation of all investigated volatile elements to allow higher pyrolysis temperatures. The maximum, loss‐free, pretreatment temperatures (°C) in the presence of 100 µg Ag by atomization from the wall or from a platform are respectively: As (1500°C, –); Cd (800°C, 800°C); Bi (700°C, 700°C); Hg (250°C, –); Pb (600°C, 900°C); Sb (1200°C, 1200°C); Se (1400°C, 1400°C); Sn (1100°C, 1100°C) and Tl (1000°C, 1100°C). Also, silver facilitates a relatively low atomization temperature (°C) from the wall for Cd (1300°C), Bi (1700°C), Pb (1400°C), Se (1900°C) and Tl (1400°C). In addition, silver enhances the measurement sensitivity by a factor of 1.2–1.8.  相似文献   

5.
X-band EPR spectra on SiCN ceramics, doped with Fe(III) ions, annealed at 800 °C, 1000 °C, 1100 °C, 1285 °C, and 1400 °C have been simulated to understand better their magnetic properties, accompanied by new magnetization measurements in the temperature range of 5–400 K for zero-field cooling (ZFC) and field cooling (FC) at 100C. The EPR spectra reveal the presence of several kinds of Fe-containing nanoparticles with different magnetic properties. The maxima of the temperature variation of ZFC magnetization were exploited to estimate (i) the blocking temperature, which decreased with annealing temperature of the samples and (ii) the distribution of the size of Fe-containing nanoparticles in the various samples, which was found to become more uniform with increasing annealing temperature, implying that more homogenous magnetic SiCN/Fe composites can be fabricated by annealing at even higher temperatures than 1400 °C to be used as sensors. The hysteresis curves showed different behaviors above (superparamagnetic), below (ferromagnetic), and about (butterfly shape) the respective average blocking temperatures, 〈TB〉. An analysis of the coercive field dependence upon temperature reveals that it follows Stoner–Wohlfarth model for the SiCN/Fe samples annealed above 1100 °C, from which the blocking temperatures was also deduced.  相似文献   

6.
The oxidation of Ni–YSZ cermet as well the reduction of re-oxidized Ni–YSZ cermet was investigated by using temperature-programmed oxidation (TPO), temperature-programmed reduction (TPR) and scanning electron microscope (SEM). The scanning electron microscope (SEM) photographs and temperature-programmed reduction (TPR) profiles indicated that the sintering of smaller nickel oxide crystallites to larger aggregates occurred concurrently with the formation of smaller nickel oxide crystallites from the oxidation of nickel at 800 °C, and the sintering of smaller nickel oxide crystallites at 600 °C was slower than that at 800 °C. The SEM results showed that each Ni particle was separated into a lot of smaller NiO particles during oxidation. The TPO profiles showed that two kinds of nickel particles exist in the anode reduced at 800 and 600 °C, one with high activity towards oxidation for the nickel crystallites directly from reduction, and another one with low activity towards oxidation for the sintered nickel particles. The Ni–YSZ anodes reduced at higher temperature showed higher re-oxidation temperature than the one reduced at lower temperature because of the accelerated passivating and sintering of the smaller nickel particles at higher temperature. The re-oxidation profiles were almost unchanged during redox cycling at 600 °C, whereas the re-oxidation peak temperature decreased during redox cycling at 800 °C, indicating that the primary nickel grains split to smaller ones upon cyclic reduction at higher temperature.  相似文献   

7.
Stable Li‐, Sb‐ and Ta‐modified (K, Na)NbO3 (LTS‐KNN) sol and gel were successfully prepared via an economical water‐based sol–gel method. Simultaneous thermogravimetry and differential scanning calorimetry (TG‐DSC) and X‐ray diffraction showed that organic compounds were eliminated and a pure perovskite phase formed around 600 °C. Transmission electron microscopy showed that the LTS‐KNN particle size was in the range of 11–34 nm after decomposition at 600 °C. Moreover, high performance LTS‐KNN ceramic was successfully prepared at a low sintering temperature of 1000 °C by use of the nanopowder, and its room‐temperature d33, Kp, K and loss are 311 pC/N, 46.8%, 1545 and 0.024, respectively. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The characteristics of a BaO–Al2O3–B2O3–SiO2–La2O3 glass ceramic prepared by spray pyrolysis were studied. Glass powders with spherical shape and amorphous phase were prepared by complete melting at a preparation temperature of 1 500°C. The mean size and geometric standard deviation of the powders prepared at the temperature of 1 500°C were 0.6 μm and 1.3. The glass powders had similar composition to that of the spray solution. The glass transition temperature (T g) of the glass powders was 600.3°C. Two crystallization exothermic peaks were observed at 769.3 and 837.8°C. Densification of the specimen started at a sintering temperature of 600°C, in which Ba4La6O(SiO4)6 as main crystal structure was observed. Complete densification of the specimen occurred at a sintering temperature of 800°C. The specimens sintered at temperatures above 800°C had main crystal structure of BaAl2Si2O8.  相似文献   

9.
The objective of the present study was to investigate the effects of sintering temperature on the structure and electrochemical performance of Mg2SiO4 cathode materials using sol-gel method. X-ray diffraction and Fourier-transform infrared analysis were used to study the structural properties of the materials. The temperatures applied in the sintering process influenced the structure, morphology, as well as particle size distribution of the Mg2SiO4. All samples sintered at temperatures of 900, 1000, and 1100 °C yielded pure Mg2SiO4 compounds consisting of orthorhombic crystalline phase with a space group of Pbnm. Particle size and lattice parameters of Mg2SiO4 samples increased with the increases of sintering temperature due to an increase of the nucleation and crystal growth rates. The cyclic voltammetry analysis showed the presence of redox reaction. This result shows that the Mg2SiO4 material has potential to be used as cathode materials in magnesium rechargeable batteries.  相似文献   

10.
Glass and glass ceramic are now well known for their high performances as sealants operating around 800 °C in solid oxide electrolyser cell. Several new formulations have been prepared and investigated: silica alkali borosilicate glass formulations that will create a glass sealant and calcium aluminosilicate formulations that will create a glass ceramic sealant. Thermal and physicochemical properties of several glasses and glass ceramics along with the crystallisation behaviour were investigated. The glass transition temperatures (T g) of the prepared glasses were found to be within the range of 600–730 °C. Shrinkage, sintering, softening, deformation and crystallisation temperatures of the parent glasses have been measured by hot stage microscopy. Microstructure and chemical composition of crystalline phases have been investigated using microprobe analysis. Bonding characteristics as well as chemical interactions of the parent glasses with yttria-stabilised zirconia (YSZ®) electrolyte and high chromium steel-based interconnect (Crofer®) have also been studied.  相似文献   

11.
Microstructure, interfacial resistance, and activation energy for composite cathodes consisting of 50 wt% (La0.85Sr0.15)0.9MnO3-δ (LSM) and 50 wt% Sm0.2Ce0.8O1.90 (SDC) were studied for intermediate-temperature solid oxide fuel cells based on SDC electrolytes. Microstructure and interfacial resistance were greatly influenced by the characteristics of starting powder and temperatures sintering the electrodes. Optimum sintering temperatures were 1100 and 950 °C, respectively, for electrodes with SDC prepared using oxalate coprecipitation technique (OCP) and glycine-nitrate process (GNP). Area-specific resistances determined using impedance spectroscopy were 0.47 and 0.92 Ω cm2 at 800 °C for LSM-SDC/OCP and LSM-SDC/GNP, respectively. The high electrochemical performance is attributed to small grain size, high porosity, and high in-plane electrical conductivity of composite cathode, demonstrating the dramatic effects of microstructure on electrode performance. To increase the electrode performance, it is critical to enhance the diffusion rate of oxygen species.  相似文献   

12.
This study deals with the application of two-dimensional proton nuclear magnetic resonance relaxometry (2D 1H NMR-R) to the characterization of porous ceramics nearly free of magnetic compounds. Different microstructural properties were obtained by firing a diamagnetic mixture of kaolin, calcium, and magnesium carbonate over a wide range of maximum temperatures (600–1100 °C) and firing times at the maximum temperature (soaking times) (0–10 h). The 2D 1H NMR-R method relies on the correlated measurement of 1H longitudinal (T 1) and transverse (T 2) relaxation times of pore-filling water by which the properties of the interconnected pore space may be investigated. In the absence of significant magnetic susceptibility effect due to para- and ferro-magnetic compounds, the 2D 1H NMR-R maps allow studying the conjoint effects on pore size distribution and inter-pore coupling due to the variations in both time and temperature of firing. The NMR experiments were performed with a low-field 1H NMR sensor, which allows non-destructive and in situ analysis. For ceramic specimens fired at 600 and 700 °C, the fraction of smallest pores increases with firing time at the expenses of those with intermediate size. The pore shrinkage occurring at this stage, and likely associated with the transformation of kaolinite in metakaolinite, is affected in a similar way by soaking time and firing temperature, in line with the concept of equivalent firing temperature. At temperatures from 800 to 1100 °C, the structural modifications involving interconnectivity and average pore size are driven primarily by firing temperature and, secondarily, by soaking time. The 2D 1H NMR-R results are confirmed by more traditional, but destructive, mineralogical, and structural analyses like X-ray powder diffraction, helium pycnometry, mercury intrusion porosimetry, and nitrogen adsorption/desorption method.  相似文献   

13.
Cu0.5Ni0.5Fe2O4 nanoparticles have been synthesized in ethylene glycol solution and in deionised water. The glycothermal reaction was carried at 200°C under gauge pressure of 100 psi. The hydrothermal treatment was done at 100°C under zero pressure. Complete single-phase cubic spinel structure in the samples made by glycothermal (sample G) and hydrothermal (sample H) processes formed after annealing at 600°C and 900°C respectively. The coercive field of sample H increases from 72 Oe to 133 Oe after sintering at 700°C and then decrease to 11 Oe on sintering at 1000°C. This variation is attributed to surface effects and crossover from single to multidomain behavior due to increasing particle size.  相似文献   

14.
The synthesis of zirconia nanoparticles is achieved through a modified facile sol–gel route. The as-prepared gel is analyzed thermally using TGA and DTA techniques to spot the crystallization process of zirconia nanoparticles. The prepared gel is then annealed at different temperatures and the structure was found to change between tetragonal and monoclinic crystal systems. The first stable tetragonal phase is achieved after annealing for 2?h at 400°C. The annealed powders between 600°C and 800°C demonstrate mixed tetragonal/monoclinic phases. Annealing at 1000°C and higher temperatures up to 1200°C resulted in pure monoclinic phase. Cubic phase was not detected within the annealing temperature range in this study. The elemental analysis of the annealed powder confirmed the formation of zirconia nanoparticles with the chemical formula ZrO2. The FTIR spectra of the annealed samples introduced a variation in the vibrational bands especially around the phase transition temperature. HR-TEM images reported the formation of nano-zirconia crystals with apparently large particle sizes. The optical energy gap of zirconia nanoparticles is investigated and determined.  相似文献   

15.
Correlation of phase formation, critical transition temperature Tc, microstructure, and critical current density Jc with sintering temperature has been studied for acetone doped MgB2/Fe tapes. Sintering was performed at 600–850 °C for 1 h in a flowing Ar atmosphere. High boron substitution by carbon was obtained with increasing the sintering temperature; however, the acetone doped samples synthesized at 800 °C contain large size MgB2 grains and more MgO impurities. Incomplete reaction for the acetone doped samples heated at 600 °C result in bad intergrain connectivity. At 4.2 K, the best Jc value was achieved in the acetone doped sample sintered at 700 °C, which reached 24,000 A/cm2 at 10 T and 10,000 A/cm2 at 12 T, respectively. Our results indicate that the small grain size and less impurity were also important for the improvement of JcB properties besides the substitutions of B by C.  相似文献   

16.
Magnetic iron nanoparticles immersed in a carbon matrix were produced by a combined process of controlled dispersion of Fe3?+? ions in sucrose, thermal decomposition with simultaneous reduction of iron cores and the formation of the porous carbonaceous matrix. The materials were prepared with iron contents of 1, 4 and 8 in %wt in sucrose and heated at 400, 600 and 800°. The samples were analyzed by XRD, Mössbauer spectroscopy, magnetization measurements, TG, SEM and TEM. The materials prepared at 400° are composed essentially of Fe3O4 particles and carbon, while treatments at higher temperatures, e.g. 600 and 800° produced as main phases Fe0 and Fe3C. The Mössbauer spectra of samples heated at 400° showed two sextets characteristic of a magnetite phase and other contributions compatible with Fe3?+? and Fe2?+? phases in a carbonaceous matrix. Samples treated at temperatures above 600° showed the presence of metallic iron with concentrations between 16?C43%. The samples heated at 800° produced higher amounts of Fe3C (between 20% and 58%). SEM showed for the iron 8% sample treated at 600?C800°C particle sizes smaller than 50 nm. Due to the presence of Fe0 particles in the carbonaceous porous matrix the materials have great potential for application as magnetic adsorbents.  相似文献   

17.
Crack‐free (100–x) SiO2x SnO2 glass‐ceramic monoliths have been prepared by the sol–gel method obtaining for the first time SnO2 concentrations of 20% with annealing at 1100 °C. Heat‐treatment resulted in the formation and growth of SnO2 nanocrystals within the silica matrices. Combined use of Fourier transform–Raman spectroscopy and in situ high‐temperature X‐Ray diffraction shows that SnO2 particles begin to crystallize in the cassiterite‐type phase at 80 °C and that their average apparent size remains around 7 nm, even after annealing at 1100 °C. Nanocrystal sizes and size distributions determined by low‐wavenumber Raman are in good agreement with those obtained from transmission electron microscopy measurements. Results indicate that the formation and the growth of SnO2 nanocrystals impose a residual porosity in the silica matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Phase transitions in two types of amorphous fullerene phases (C60–C70 (50/50) mixtures and an amorpous C70 fullerene phase) are studied via neutron diffraction at pressures of 2–8 GPa and temperatures of 200–1100°C. Fullerenes are amorphized by grinding in a ball mill and sintered under quasi-hydrostatic pressure in a toroidal-type chamber. Diffraction studies are performed ex situ. It is shown that the amorphous phase of fullerenes retains its structure at temperatures of 200–500°C, and amorphous graphite is formed at 800–1100°C with a subsequent transition to crystalline graphite. This process is slow in a mixture of fullerenes, compared to C70 fullerene. According to neutron diffraction data, the amorphous graphite formed from amorphous fullerene phases has anisotropy that is much weaker in a fullerene mixture.  相似文献   

19.
The control of spin‐dependent‐magnetoresistance by regulation of the heat treatment (HT) temperature for magnetite (Fe3O3) nano‐particle sinter (MNPS) has been studied. The average nano‐particle size in the MNPS is 30nm and the HT was carried out from 400°C to 800°C. The HT of the MNPS varies the coupling form between adjacent magnetite nano‐particles and the crystallinity of that. The measurements on electrical resistance (ER), magnetoresistance (MR) and magnetization were performed between 4K and 300K. The behavior of the ER and MR considerably changes at the HT temperature of ~600°C. Below ~600°C the ER indicates the variable‐range‐hopping conduction behavior and the MR shows the large intensity in a wide temperature region. Above ~600°C the ER shows the indication of the Verwey transition near 110K like a bulk single crystal and the MR designates the smaller intensity. We consider that below ~600°C the ER and MR are dominated by the grain‐boundary conduction and above ~600°C those are determined by the inter‐grain conduction. The magnetic field application to the grain‐boundary region is inferred to cause the large enhancement of the MR.  相似文献   

20.
In order to study the influence of powder calcination temperature on lithium ion conductivity, synthesized Li1.3Ti1.7Al0.3(PO4)3 (LATP) was calcined at temperatures between 750 and 900 °C. The shape and size of the particles were characterized employing scanning electron microscopy (SEM), and specific surface area of the obtained powder was measured. The crystallinity grade of different heat-treated powders was calculated from XRD spectra. Posteriorly, all powders were sintered at 1100 °C employing field-assisted sintering (SPS), and the electrical properties were correlated to the calcination conditions. The highest ionic conductivity was observed for samples made out of powders calcined at 900 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号