首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water adsorbed in submonolayer coverage on Ag(111) at 70 K forms hydrogen-bonded networks. High resolution images in combination with calculation reveal that single protrusions represent a cyclic water hexamer with the intermolecular bond stretched to the silver lattice constant of 0.29 nm. Scanning tunneling spectroscopy indicates that the bond length within the two-dimensional hydrogen-bonded water layer is shortened. The spectra contain further information about the vibrational modes of water molecules.  相似文献   

2.
Theoretical approximations to the sum frequency vibrational spectroscopy (SFVS) of the carbon tetrachloride/water interface are constructed using the quantum-corrected time correlation functions (TCF) to aid in interpretation of experimental data and to predict novel vibrational modes. Instantaneous normal mode (INM) methods are used to characterize the observed modes leading to the TCF signal, thus providing molecular resolution of the vibrational lineshapes. Detailed comparisons of the theoretical signals are made with those obtained experimentally and show excellent agreement for the spectral peaks in the O-H stretching region of water. An intermolecular mode, unique to the interface, at 848 cm(-1) is also identifiable, similar to the one seen for the water/vapor interface. INM analysis reveals the resonance is due to a wagging mode (hindered rotation) that was previously identified (Perry et al 2005 J. Chem. Phys. 123 144705) as localized on a single water molecule with both hydrogens displaced normal to the interface-generally it is found that the symmetry breaking at the interface leads to hindered translations and rotations at hydrophilic/hydrophobic interfaces that assume finite vibrational frequencies due to anchoring at the aqueous interface. Additionally, examination of the real and imaginary parts of the theoretical SFVS spectra reveal the spectroscopic species attributed the resonances and possible subspecies in the O-H region; these results are consistent with extant experimental data and associated analysis.  相似文献   

3.
对四种不同的实验构型下空气/水界面自由O-H键在3700cm~(-1)的和频振动光谱的分析表明,水分子在空气/水界面的取向运动只可能是在平衡位置附近有限角度之内的受限转动。界面水分子的自由O-H键取向距界面法线约33°,而取向分布或运动的宽度不超过15°。这一图像显著地不同于Wei等人(Phys. Rev. Lett.86,4799(2001))只通过单一的SFG实验构型所得出结论,即:空气/水界面的水分子在超快的振动弛豫时间内在很大的角度范围内运动。  相似文献   

4.
The results of calculations of vibrational excitation and dissociative electron attachment cross-sections of DCl and DBr are reported. The calculations are based on the nonlocal resonance model for electron-HCl/HBr scattering. The cross-sections for many initial rovibrational target states were calculated both for the hydrogenated and the deuterated compounds. The calculations reveal an unexpected result: the vibrational excitation cross-section of the deuterated molecule may in some cases be (significantly) larger than that of the hydrogenated compound. This effect is observed when the target molecule is initially excited to a vibrational state the energy of which is close to the threshold of dissociative attachment. Rotational excitation of the target molecule plays a similar role. Isotope effects in dissociative electron attachment are also discussed.  相似文献   

5.
ABSTRACT

We have examined the impact of intermolecular vibrational coupling effects of the O-H stretch modes, as obtained by the surface-specific velocity-velocity correlation function approach, on the simulated sum-frequency generation spectra of the water/air interface. Our study shows that the inclusion of intermolecular coupling effects within the first three water layers, i.e. from the water/air interface up to a distance of 6?Å towards the bulk, is essential to reproduce the experimental SFG spectra. In particular, we find that these intermolecular vibrational contributions to the SFG spectra of the water/air interface are dominated by the coupling between the SFG active interfacial and SFG inactive bulk water molecules. Moreover, we find that most of the intermolecular vibrational contributions to the spectra originate from the coupling between double-donor water molecules only, whereas the remaining contributions originate mainly from the coupling between single-donor and double-donor water molecules.  相似文献   

6.
韩冬  陈良富  李莘莘  陶金花  苏林  邹铭敏  范萌 《物理学报》2013,62(10):109301-109301
利用被动差分吸收光谱算法反演水体上方尤其是海洋上方的大气痕量气体浓度时, 水体的振动拉曼散射导致对太阳光谱中夫琅禾费线的填充.若不考虑这种类似大气Ring效应的水Ring效应, 会直接影响反演精度. 参考OMI传感器对大气Ring效应校正的卷积算法, 针对痕量气体OClO的反演, 利用经过大气消光计算后的太阳 360–400 nm入射光谱和对应波段的水体后向振动拉曼散射系数,通过卷积差分计算,得到了差分水 Ring效应系数. 与Vasilkov模型计算得到的结果比较,二者的相关系数R 达到0.9665. 关键词: 水Ring效应 振动拉曼散射 卷积 被动差分吸收光谱算法  相似文献   

7.
We report a femtosecond time-resolved study of water at the neat water-air interface. The O-H stretch vibrational lifetime of hydrogen-bonded interfacial water is measured using surface-specific 4th-order nonlinear optical spectroscopy with femtosecond infrared pulses. The vibrational lifetime in the frequency range of 3200 to 3500 cm(-1) is found to closely resemble that of bulk water, indicating ultrafast exchange of vibrational energy between surface water molecules and those in the bulk.  相似文献   

8.
High-resolution X-ray measurements near a nuclear resonance reveal the complete vibrational spectrum of the probe nucleus. Because of this, nuclear resonance vibrational spectroscopy (NRVS) is a uniquely quantitative probe of the vibrational dynamics of reactive iron sites in proteins and other complex molecules. Our measurements of vibrational fundamentals have revealed both frequencies and amplitudes of 57Fe vibrations in proteins and model compounds. Information on the direction of Fe motion has also been obtained from measurements on oriented single crystals, and provides an essential test of normal mode predictions. Here, we report the observation of weaker two-quantum vibrational excitations (overtones and combinations) for compounds that mimic the active site of heme proteins. The predicted intensities depend strongly on the direction of Fe motion. We compare the observed features with predictions based on the observed fundamentals, using information on the direction of Fe motion obtained either from DFT predictions or from single crystal measurements. Two-quantum excitations may become a useful tool to identify the directions of the Fe oscillations when single crystals are not available.  相似文献   

9.
A new spectroscopic filter constructed with a high-spectral-resolution grating and two narrow-band mirrors is designed to separate the elastic scattering and the vibrational Raman scattering spectra in an ultraviolet (UV) Raman lidar system. The density of humidity and water vapor mixing ratio are calculated from the vibrational Raman scattering signals of N2 and H2O. Water vapor mixing ratio is retrieved from this development. With this measured water vapor mixing ratio, the relative humidity is calculated with atmospheric temperature profile obtained by another Raman temperature lidar. Preliminary experiments and comparison results between lidar and radiosonde showed that the UV Raman lidar system has the capability for profiling the water vapor mixing ratio up to a height of 2 km with less than 10% of the uncertainty under the conditions of laser energy of 300 mJ and signal-averaging time of 10 min.  相似文献   

10.
Measurement of the low temperature neutron excess of scattering of H2O-hydrated plastocyanin relative to D2O-hydrated protein allowed us to reveal the presence of an inelastic peak at about 3.5 meV. This excess of vibrational modes, elsewhere termed "boson peak," is due to the dynamical behavior of the water molecules belonging to the H2O-hydration shell surrounding the protein. The relevance of the boson peak to the dynamical coupling between the solvent and the protein, and hence to the protein functionality is addressed.  相似文献   

11.
高欣  王强  孙刚  李晨曦  胡林 《中国物理 B》2016,25(2):26801-026801
Raman spectra of confined water adsorbed in nanoporous TiO_2 are obtained in experiment. TiO_2 samples with different pore diameters under different humidity conditions are investigated. The results indicate that the symmetric vibrational mode of water molecule is destroyed when relative humidity decreases. This indicates that the interaction between water molecules and surface of TiO_2 becomes stronger when the distance between water molecules and surface turns smaller, and the interaction plays a major role in depressing the symmetric vibrational peak. The spectra of confined water in TiO_2 and Vycor are compared. When filling fractions are the same, their spectra show distinctions no matter whether they are in partial filling condition or in full filling condition. The spectra of HDO confined in TiO_2 with different filling fractions are compared with each other. There is no clear distinction among their vibrational peaks, and the peaks mainly relate to asymmetric vibration. Therefore, the interaction between water molecules and the wall of pore decouples the symmetric vibrational mode only, and the influences on asymmetric vibrational mode show little differences among different filling fractions.  相似文献   

12.
The Rayleigh–Schrödinger perturbation theory of high orders and the algebraic Padé–Hermite approximants are used to determine the singular points of a vibrational energy function of the formaldehyde molecule dependent on a complex perturbation parameter as on the argument. It is shown that the Fermi, Darling–Dennison, and other higher-order vibrational resonances are related to Katz’s points—common branch points on the complex plane of the energy of two vibrational states. Analysis of Katz’s points that connect different vibrational states allows one to reveal essential resonance perturbations, to introduce an additional classification for them, and to determine the polyad structure of an energy spectrum.  相似文献   

13.
氮气分子的振动自由度在大气放电低温等离子体中会被高度激发。从振动能级的简谐振子模型和Boltzmann分布近似出发,研究重复频率脉冲放电中振动温度的变化行为。结果表明,决定重频条件下振动温度的主要过程是电子碰撞振动激发和振动-平动弛豫,而在振动能级高度激发的情形下其与氧原子的化学反应也会产生影响。对于振动激发过程,通过跃迁反比相似率推导出的特征弛豫时间与动理学模型符合较好。在振动-平动弛豫中占主导贡献的为干燥大气中的氧原子或潮湿大气中的水分子。当氧原子数密度为1014 cm-3时,若初始振动温度在5000 K,在化学反应过程中振动能量的特征弛豫时间在0.1~1 s量级。  相似文献   

14.
We present simulations on pump-dump-probe experiments performed on the potassium dimer. The interaction of two time-delayed laser pulses prepares vibrational wave packets in the electronic ground state. The quantum calculations reveal to what extent it is possible to prepare a ground state superposition of states with high versus low vibrational quantum numbers by changing the pump-dump delay time. It is shown that transient signals may exhibit interference effects which are due to characteristics of ground state wave-packets composed of two components showing different vibrational dynamics. In this way the signals are able to yield information about vibrational overtone motion. Received 27 September 2000 and Received in final form 21 November 2000  相似文献   

15.
We studied the effect of densification on the vibrational dynamics of a Na(2)FeSi(3)O(8) glass. The density of vibrational states (DOS) has been measured using nuclear inelastic scattering. The corresponding changes in the microscopic, intermediate-range, and macroscopic properties have also been investigated. The results reveal that, in the absence of local structure transformations, the Debye level and the glass-specific excess of vibrational states above it have the same dependence on density, and the evolution of the DOS is fully described by the transformation of the elastic medium.  相似文献   

16.
We report results of a systematic study for vibrational thermodynamic functions of Cu-Ni alloys, in the harmonic approximation, using interaction potentials based on the embedded atom method with improved optimization techniques. The vibrational density of states of the systems is calculated using real space Green’s function method. From an investigation of local force fields we found that increasing Ni concentration in the alloy substantially stiffens the force experienced by Cu atoms compared to that of Ni atoms. Our calculations also reveal that vibrational entropy change between ordered and disordered crystals of Cu-Ni is negligible. However, the mixing entropy of the phonons and electronic states is found to be negative and favors un-mixing, and thus contributes to the miscibility gap.  相似文献   

17.
Nuclei, like more familiar mechanical systems, undergo simple vibrational motion. Among these vibrations, sound modes are of particular interest since they reveal important information on the effective interactions among the constituents and, through extrapolation, on the bulk behaviour of nuclear and neutron matter. Sound wave propagation in nuclei shows strong quantum effects familiar from other quantum systems. Microscopic theory suggests that the restoring forces are caused by the complex structure of the many-Fermion wavefunction and, in some cases, have no classical analogue. The damping of the vibrational amplitude is strongly influenced by phase coherence among the particles participating in the motion.  相似文献   

18.
We studied structural, optical and vibrational properties of K-doped ZnO nanostructures. X-ray diffraction studies reveal that the prepared particles are hexagonal wurtzite in structure. Increase in lattice parameters and unit cell volume is observed after K doping. Dopant influences on stress, strain of the system are studied using W–H plots. Band gap variation by doping of K is identified from optical absorption studies. Photoluminescence studies have given insight into the enhancement in blue emission observed by K doping along with the near band emission of nano ZnO. From Fourier transform infrared spectral measurements, K-related local vibration mode is observed along with the information related to influence of doping on characteristic vibrational modes of ZnO.  相似文献   

19.
The dynamics of water, confined on a nanometer length scale (1.7 to 4.0 nm) in sodium bis-(2-ethylhexyl) sulfosuccinate reverse micelles, is directly investigated using frequency resolved infrared vibrational echo experiments. The data are compared to bulk water and salt solution data. The experimentally determined frequency-frequency correlation functions show that the confined water dynamics is substantially slower than bulk water dynamics and is size dependent. The fastest dynamics (approximately 50 fs) is more similar to bulk water, while the slowest time scale dynamics is much slower than water, and, in analogy to bulk water, reflects the making and breaking of hydrogen bonds.  相似文献   

20.
We study the vibrational dynamics of nanodroplets of liquid water with femtosecond two-color midinfrared pump-probe spectroscopy. For the smallest nanodroplet, containing 10-15 water molecules, the lifetime T1 of the O-H stretch vibrations is equal to 0.85+/-0.1 ps, which is more than 3 times as long as in bulk liquid water. We find that the truncation of the hydrogen-bond network of water leads to a dramatic change of the relaxation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号